Skip to main content

Selective Targeting of CD133-Expressing Glioblastoma Stem Cells Using Lentiviral Vectors

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1741))

Abstract

Several lines of evidence suggest a cellular hierarchy in glioblastoma (GBM). In this hierarchy, GBM stem-like cells (GSCs) play critical roles in tumor progression and recurrence, by virtue of their robust tumor-propagating potential and resistance to conventional chemoradiotherapy. Therefore, targeting GSCs holds significant therapeutic promise. Expression of CD133 (PROM1), a cell surface glycoprotein, has been associated with the GSC phenotype and used as a GSC marker. Here, we describe a protocol that allows the selective lentiviral transduction of CD133-expressing GBM cells. This selectivity is conferred by pseudotyping the lentiviral envelope with a single-chain antibody against an extracellular epitope on CD133. We previously demonstrated the efficacy and specificity of this lentiviral vector using patient-derived GBM cultures. This chapter outlines the preparation of the vector and the transduction of human GBM cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401. https://doi.org/10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  2. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760. https://doi.org/10.1038/nature05236

    Article  CAS  PubMed  Google Scholar 

  3. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526. https://doi.org/10.1038/nature11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C, Tabar V (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468(7325):829–833. https://doi.org/10.1038/nature09624

    Article  CAS  PubMed  Google Scholar 

  5. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De Maria R (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468(7325):824–828. https://doi.org/10.1038/nature09557

    Article  CAS  PubMed  Google Scholar 

  6. Bayin NS, Modrek AS, Placantonakis DG (2014) Glioblastoma stem cells: Molecular characteristics and therapeutic implications. World J Stem Cells 6(2):230–238. https://doi.org/10.4252/wjsc.v6.i2.230

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bayin NS, Frenster JD, Sen R, Si S, Modrek AS, Galifianakis N, Dolgalev I, Ortenzi V, Illa-Bochaca I, Khahera A, Serrano J, Chiriboga L, Zagzag D, Golfinos JG, Doyle W, Tsirigos A, Heguy A, Chesler M, Barcellos-Hoff MH, Snuderl M, Placantonakis DG (2017) Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells. Oncotarget. https://doi.org/10.18632/oncotarget.18117

    Google Scholar 

  8. Hardee ME, Marciscano AE, Medina-Ramirez CM, Zagzag D, Narayana A, Lonning SM, Barcellos-Hoff MH (2012) Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-beta. Cancer Res 72(16):4119–4129. https://doi.org/10.1158/0008-5472.CAN-12-0546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bayin NS, Ma L, Thomas C, Baitalmal R, Sure A, Fansiwala K, Bustoros M, Golfinos JG, Pacione D, Snuderl M, Zagzag D, Barcellos-Hoff MH, Placantonakis D (2016) Patient-specific screening using high-grade glioma explants to determine potential radiosensitization by a TGF-beta small molecule inhibitor. Neoplasia 18(12):795–805. https://doi.org/10.1016/j.neo.2016.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG (2010) Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 177(3):1491–1502. https://doi.org/10.2353/ajpath.2010.091021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Christensen K, Schroder HD, Kristensen BW (2011) CD133+ niches and single cells in glioblastoma have different phenotypes. J Neuro-Oncol 104(1):129–143. https://doi.org/10.1007/s11060-010-0488-y

    Article  CAS  Google Scholar 

  12. Rong Y, Durden DL, Van Meir EG, Brat DJ (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65(6):529–539

    Article  PubMed  Google Scholar 

  13. Seidel S, Garvalov BK, Wirta V, von Stechow L, Schanzer A, Meletis K, Wolter M, Sommerlad D, Henze AT, Nister M, Reifenberger G, Lundeberg J, Frisen J, Acker T (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain J Neurol 133(Pt 4):983–995. https://doi.org/10.1093/brain/awq042

    Article  Google Scholar 

  14. Jamal M, Rath BH, Tsang PS, Camphausen K, Tofilon PJ (2012) The brain microenvironment preferentially enhances the radioresistance of CD133(+) glioblastoma stem-like cells. Neoplasia 14(2):150–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jamal M, Rath BH, Williams ES, Camphausen K, Tofilon PJ (2010) Microenvironmental regulation of glioblastoma radioresponse. Clin Cancer Res 16(24):6049–6059. https://doi.org/10.1158/1078-0432.CCR-10-2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kang MK, Kang SK (2007) Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem Cells Dev 16(5):837–847. https://doi.org/10.1089/scd.2007.0006

    Article  CAS  PubMed  Google Scholar 

  17. Grosse-Gehling P, Fargeas CA, Dittfeld C, Garbe Y, Alison MR, Corbeil D, Kunz-Schughart LA (2013) CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol 229(3):355–378. https://doi.org/10.1002/path.4086

    Article  CAS  PubMed  Google Scholar 

  18. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, Buck DW (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90(12):5013–5021

    CAS  PubMed  Google Scholar 

  19. Weigmann A, Corbeil D, Hellwig A, Huttner WB (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci U S A 94(23):12425–12430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90(12):5002–5012

    CAS  PubMed  Google Scholar 

  21. Finkelshtein D, Werman A, Novick D, Barak S, Rubinstein M (2013) LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci U S A 110(18):7306–7311. https://doi.org/10.1073/pnas.1214441110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Anliker B, Abel T, Kneissl S, Hlavaty J, Caputi A, Brynza J, Schneider IC, Munch RC, Petznek H, Kontermann RE, Koehl U, Johnston IC, Keinanen K, Muller UC, Hohenadl C, Monyer H, Cichutek K, Buchholz CJ (2010) Specific gene transfer to neurons, endothelial cells and hematopoietic progenitors with lentiviral vectors. Nat Methods 7(11):929–935. https://doi.org/10.1038/nmeth.1514

    Article  CAS  PubMed  Google Scholar 

  23. Bayin NS, Modrek AS, Dietrich A, Lebowitz J, Abel T, Song HR, Schober M, Zagzag D, Buchholz CJ, Chao MV, Placantonakis DG (2014) Selective lentiviral gene delivery to CD133-expressing human glioblastoma stem cells. PLoS One 9(12):e116114. https://doi.org/10.1371/journal.pone.0116114

    Article  PubMed  PubMed Central  Google Scholar 

  24. Funke S, Maisner A, Muhlebach MD, Koehl U, Grez M, Cattaneo R, Cichutek K, Buchholz CJ (2008) Targeted cell entry of lentiviral vectors. Mol Ther 16(8):1427–1436. https://doi.org/10.1038/mt.2008.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15(9):871–875. https://doi.org/10.1038/nbt0997-871

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris G. Placantonakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bayin, N.S., Placantonakis, D.G. (2018). Selective Targeting of CD133-Expressing Glioblastoma Stem Cells Using Lentiviral Vectors. In: Placantonakis, D. (eds) Glioblastoma. Methods in Molecular Biology, vol 1741. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7659-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7659-1_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7658-4

  • Online ISBN: 978-1-4939-7659-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics