Skip to main content

Milk-derived Extracellular Vesicles for Therapeutic Delivery of Small Interfering RNAs

  • Protocol
Extracellular RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1740))

Abstract

As endogenous biological nanoparticles capable of uptake by cells, extracellular vesicles (EVs) have the capacity to deliver their RNA cargo to recipient cells. The use of EVs as a drug delivery system remains in its infancy, and there are several barriers to the use of EV for this purpose. Amongst these is the need to ensure that adequate amounts of EV are available. The use of milk-derived EV provides a scalable approach and loading of these EVs with RNA is possible with the use of chemical transfection reagents. This method describes the use of milk-derived EV for delivery of small interfering RNA. These EVs were shown to be taken up by hepatocellular carcinoma cells in vitro, with a reduction in the expression of target gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  Google Scholar 

  2. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  CAS  Google Scholar 

  3. Duijvesz D, Luider T, Bangma CH, Jenster G (2011) Exosomes as biomarker treasure chests for prostate cancer. Eur Urol 59:823–831

    Article  CAS  Google Scholar 

  4. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  Google Scholar 

  5. van Dommelen SM, Vader P, Lakhal S, Kooijmans SA, van Solinge WW, Wood MJ et al (2012) Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. J Control Release 161:635–644

    Article  Google Scholar 

  6. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856

    Article  CAS  Google Scholar 

  7. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107:6328–6333

    Article  CAS  Google Scholar 

  8. MP C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17:879–887

    Article  Google Scholar 

  9. Zhou H, Pisitkun T, Aponte A, Yuen PS, Hoffert JD, Yasuda H et al (2006) Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int 70:1847–1857

    Article  CAS  Google Scholar 

  10. Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M et al (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179:1969–1978

    Article  CAS  Google Scholar 

  11. Andre F, Chaput N, Schartz NE, Flament C, Aubert N, Bernard J et al (2004) Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol 172:2126–2136

    Article  CAS  Google Scholar 

  12. Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S (2002) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3:1156–1162

    Article  CAS  Google Scholar 

  13. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    Article  CAS  Google Scholar 

  14. Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S et al (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med 3:10

    Article  Google Scholar 

  15. Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM et al (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3:9

    Article  Google Scholar 

  16. Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H et al (2008) Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther 16:782–790

    Article  CAS  Google Scholar 

  17. Munagala R, Aqil F, Jeyabalan J, Gupta RC (2016) Bovine milk-derived exosomes for drug delivery. Cancer Lett 371:48–61

    Article  CAS  Google Scholar 

  18. Maji S, Yan IK, Parasramka M, Mohankumar S, Matsuda A, Patel T (2017) In vitro toxicology studies of extracellular vesicles. J Appl Toxicol 37:310–318

    Article  CAS  Google Scholar 

  19. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452

    Article  CAS  Google Scholar 

  20. Kosaka N, Iguchi H, Yoshioka Y, Hagiwara K, Takeshita F, Ochiya T (2012) Competitive interactions of cancer cells and normal cells via secretory microRNAs. J Biol Chem 287:1397–1405

    Article  CAS  Google Scholar 

  21. Pan Q, Ramakrishnaiah V, Henry S, Fouraschen S, de Ruiter PE, Kwekkeboom J et al (2012) Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi). Gut 61:1330–1339

    Article  CAS  Google Scholar 

  22. Wahlgren J, De LKT, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P et al (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40:e130

    Article  CAS  Google Scholar 

  23. Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV, Filatov MV (2013) Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 11:88

    Article  CAS  Google Scholar 

  24. Hood JL, Scott MJ, Wickline SA (2014) Maximizing exosome colloidal stability following electroporation. Anal Biochem 448:41–49

    Article  CAS  Google Scholar 

  25. Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ et al (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–2390

    Article  CAS  Google Scholar 

  26. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C et al (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18:1606–1614

    Article  CAS  Google Scholar 

  27. Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J et al (2013) Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 7:7698–7710

    Article  CAS  Google Scholar 

  28. Kooijmans SA, Stremersch S, Braeckmans K, de Smedt SC, Hendrix A, Wood MJ et al (2013) Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release 172:229–238

    Article  CAS  Google Scholar 

  29. Jiang L, Vader P, Schiffelers RM (2017) Extracellular vesicles for nucleic acid delivery: progress and prospects for safe RNA-based gene therapy. Gene Ther 24:157–166

    Article  CAS  Google Scholar 

  30. Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M (2014) A comprehensive overview of exosomes as drug delivery vehicles – endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 1846:75–87

    CAS  PubMed  Google Scholar 

  31. Elsabahy M, Zhang S, Zhang F, Deng ZJ, Lim YH, Wang H et al (2013) Surface charges and shell crosslinks each play significant roles in mediating degradation, biofouling, cytotoxicity and immunotoxicity for polyphosphoester-based nanoparticles. Sci Rep 3:3313

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (USA) Office of the Director through grant UH3 TR000884. We acknowledge the expert assistance of Caitlyn Foerst and thank the members of our laboratories for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Matsuda, A., Patel, T. (2018). Milk-derived Extracellular Vesicles for Therapeutic Delivery of Small Interfering RNAs. In: Patel, T. (eds) Extracellular RNA. Methods in Molecular Biology, vol 1740. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7652-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7652-2_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7651-5

  • Online ISBN: 978-1-4939-7652-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics