Skip to main content

Live Imaging of Schwann Cell Development in Zebrafish

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1739))

Abstract

The optical transparency of zebrafish larvae enables live imaging. Here we describe the methodology for live imaging and detail how to mount larvae for live imaging of Schwann cell development.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Monk KR, Talbot WS (2009) Genetic dissection of myelinated axons in zebrafish. Curr Opin Neurobiol 19:486–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Perlin JR, Lush ME, Stephens WZ et al (2011) Neuronal Neuregulin 1 type III directs Schwann cell migration. Development 138:4639–4648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lyons DA, Pogoda HM, Voas MG et al (2005) erbb3 and erbb2 are essential for Schwann cell migration and myelination in zebrafish. Curr Biol 15:513–524

    Article  CAS  PubMed  Google Scholar 

  4. Rosenberg AF, Isaacman-Beck J, Franzini-Armstrong C, Granato M (2014) Schwann cells and deleted in colorectal carcinoma direct regenerating motor axons towards their original path. J Neurosci 34:14668–14681

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gilmour DT, Maischein HM, Nüsslein-Volhard C (2002) Migration and function of a glial subtype in the vertebrate peripheral nervous system. Neuron 34:577–588

    Article  CAS  PubMed  Google Scholar 

  6. Kirby BB, Takada N, Latimer AJ et al (2006) In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci 9:1506–1511

    Article  CAS  PubMed  Google Scholar 

  7. Dutton KA, Antonellis A, Carney T et al (2008) An evolutionarily conserved intronic region controls the spatiotemproal expression of the transcription factor Sox10. BMC Dev Biol 8:105

    Google Scholar 

  8. Prendergast A, Linbo TH, Swarts T et al (2012) The metalloproteinase inhibitor Reck is essential for zebrafish DRG development. Development 139:1141–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Das A, Crump JG (2012) Bmps and id2a act upstream of Twist1 to restrict ectomesenchyme potential of the cranial neural crest. PLoS Genet 8:e1002710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Almeida RG, Lyons DA (2015) Intersectional gene expression in zebrafish using the split KalTA4 system. Zebrafish 12:377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hochgreb-Hägele T, Bronner ME (2013) A novel FoxD3 gene trap line reveals neural crest precursor movement and a role for FoxD3 in their specification. Dev Biol 374:1–11

    Article  PubMed  Google Scholar 

  12. Münzel EJ, Schaefer K, Obirei B et al (2012) Claudin k is specifically expressed in cells that form myelin during development of the nervous system and regeneration of the optic nerve in adult zebrafish. Glia 60:253–270

    Article  PubMed  Google Scholar 

  13. Jung SH, Kim S, Chung AY et al (2010) Visualization of myelination in GFP-transgenic zebrafish. Dev Dyn 239:592–597

    Article  CAS  PubMed  Google Scholar 

  14. Almeida RG, Czopka T, Lyons DA (2011) Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development 138:4443–4444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hines JH, Ravanelli AM, Schwindt R et al (2015) Neuronal activity biases axon selection for myelination in vivo. Nat Neurosci 18:683–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly R. Monk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cunningham, R.L., Monk, K.R. (2018). Live Imaging of Schwann Cell Development in Zebrafish. In: Monje, P., Kim, H. (eds) Schwann Cells. Methods in Molecular Biology, vol 1739. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7649-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7649-2_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7648-5

  • Online ISBN: 978-1-4939-7649-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics