Skip to main content

Whole Mount In Situ Hybridization and Immunohistochemistry for Zebrafish Larvae

  • Protocol
  • First Online:
Schwann Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1739))

Abstract

In situ hybridization enables visualization of mRNA localization, and immunohistochemistry enables visualization of protein localization within a tissue or organism. Both techniques have been extensively utilized in zebrafish (Thisse et al., Development 119:1203–1215, 1993; Dutton et al., Development 128:4113–4125, 2001; Gilmour et al., Neuron 34:577–588, 2002; Lyons et al., Curr Biol 15:513–524, 2005) including for visualization of mRNA localization in Schwann cells (Lyons et al., Curr Biol 15:513–524, 2005; Monk et al., Science 325:1402–1405, 2009). For in situ hybridization, here, we outline how to generate RNA probes, conduct whole mount in situ hybridization for larvae, and list RNA probes that label different stages of Schwann cell development in zebrafish. For immunohistochemistry, the protocol we outline can be used to mark Schwann cells of sensory and motor nerves to examine properties such as developmental stage, morphology, proliferation, and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thisse C, Thisse B, Schilling TF et al (1993) Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119:1203–1215

    CAS  PubMed  Google Scholar 

  2. Dutton KA, Pauliny A, Lopes S et al (2001) Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development 128:4113–4125

    CAS  PubMed  Google Scholar 

  3. Gilmour DT, Maischein HM, Nüsslein-Volhard C (2002) Migration and function of a glial subtype in the vertebrate peripheral nervous system. Neuron 34:577–588

    Article  CAS  PubMed  Google Scholar 

  4. Lyons DA, Pogoda HM, Voas MG et al (2005) erbb3 and erbb2 are essential for Schwann cell migration and myelination in zebrafish. Curr Biol 15:513–524

    Article  CAS  PubMed  Google Scholar 

  5. Rubinstein AL, Lee D, Luo R et al (2000) Genes dependent on zebrafish cyclops function identified by AFLP differential gene expression screen. Genesis 26:86–97

    Article  CAS  PubMed  Google Scholar 

  6. Monk KR, Naylor SG, Glenn TD et al (2009) AG protein–coupled receptor is essential for Schwann cells to initiate myelination. Science 325:1402–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Levavasseur F, Mandemakers W, Visser P et al (1998) Comparison of sequence and function of the Oct-6 genes in zebrafish, chicken and mouse. Mech Dev 74:89–98

    Article  CAS  PubMed  Google Scholar 

  8. Oxtoby E, Jowett T (1993) Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res 21:1087–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brösamle C, Halpern M (2002) Characterization of myelination in the developing zebrafish. Glia 39:47–57

    Article  PubMed  Google Scholar 

  10. Takada N, Appel B (2010) Identification of genes expressed by zebrafish oligodendrocytes using a differential microarray screen. Dev Dyn 239:2041–2047

    Article  CAS  PubMed  Google Scholar 

  11. Takada N, Kucenas S, Appel B (2010) Sox10 is necessary for oligodendrocyte survival following axon wrapping. Glia 58:996–1006

    PubMed  PubMed Central  Google Scholar 

  12. Schaefer K, Brösamle C (2009) Zwilling-A and-B, two related myelin proteins of teleosts, which originate from a single bicistronic transcript. Mol Biol Evol 26:495–499

    Article  CAS  PubMed  Google Scholar 

  13. Pogoda HM, Sternheim N, Lyons DA et al (2006) A genetic screen identifies genes essential for development of myelinated axons in zebrafish. Dev Biol 298:118–131

    Article  CAS  PubMed  Google Scholar 

  14. Kazakova N, Li H, Mora A et al (2006) A screen for mutations in zebrafish that affect myelin gene expression in Schwann cells and oligodendrocytes. Dev Biol 297:1–13

    Article  CAS  PubMed  Google Scholar 

  15. Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3:59–69

    Article  CAS  PubMed  Google Scholar 

  16. Langworthy MM, Appel B (2012) Schwann cell myelination requires Dynein function. Neural Dev 7:1

    Article  Google Scholar 

  17. Macdonald R (1999) Zebrafish immunohistochemistry. In: Guielle M (ed) Molecular methods in developmental biology: Xenopus and Zebrafish, vol 147. Humana Press, Totowa, pp 77–88

    Chapter  Google Scholar 

  18. Ng AN, de Jong-Curtain TA, Mawdsley DJ et al (2005) Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev Biol 286:114–135

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly R. Monk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cunningham, R.L., Monk, K.R. (2018). Whole Mount In Situ Hybridization and Immunohistochemistry for Zebrafish Larvae. In: Monje, P., Kim, H. (eds) Schwann Cells. Methods in Molecular Biology, vol 1739. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7649-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7649-2_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7648-5

  • Online ISBN: 978-1-4939-7649-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics