Skip to main content

Lentiviral Transduction of Rat Schwann Cells and Dorsal Root Ganglia Neurons for In Vitro Myelination Studies

  • Protocol
  • First Online:
Schwann Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1739))

Abstract

Lentiviral transduction is a gene delivery method that provides numerous advantages over direct transfection and traditional retroviral or adenoviral delivery methods. It facilitates for the transduction of primary cells inherently difficult to transfect, delivers constructs of interest to nondividing as well as dividing cells, and permits the long-term expression of sizable DNA inserts (e.g., <7 kb). The study of peripheral nerve myelination at the molecular level has long benefited from the Schwann cells/dorsal root ganglia (DRG) neurons myelinating co-culture system. As this culture system takes about a month to develop and perform experiments with, lentiviral-delivered constructs can be used to manipulate gene expression in Schwann cells and DRG neurons, primary cells that are otherwise resilient to direct transfection. Here we present our protocol for lentiviral production and purification and subsequent infection of large numbers of Schwann cells and/or DRG neurons for the molecular study of peripheral nerve myelination in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ganem D, Nussbaum AL, Davoli D, Fareed GC (1976) Propagation of a segment of bacteriophage lambda-DNA in monkey cells after covalent linkage to a defective simian virus 40 genome. Cell 7(3):349–359

    Article  CAS  PubMed  Google Scholar 

  2. Goff SP, Berg P (1976) Construction of hybrid viruses containing SV40 and lambda phage DNA segments and their propagation in cultured monkey cells. Cell 9(4 PT 2):695–705

    Article  CAS  PubMed  Google Scholar 

  3. Nussbaum AL, Davoli D, Ganem D, Fareed GC (1976) Construction and propagation of a defective simian virus 40 genome bearing an operator from bacteriophage lambda. Proc Natl Acad Sci U S A 73(4):1068–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mann R, Mulligan RC, Baltimore D (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33(1):153–159

    Article  CAS  PubMed  Google Scholar 

  5. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267

    Article  CAS  PubMed  Google Scholar 

  6. Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5(4):387–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaplan AH, Swanstrom R (1991) Human immunodeficiency virus type 1 Gag proteins are processed in two cellular compartments. Proc Natl Acad Sci U S A 88(10):4528–4532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nie Z, Phenix BN, Lum JJ, Alam A, Lynch DH, Beckett B, Krammer PH, Sekaly RP, Badley AD (2002) HIV-1 protease processes procaspase 8 to cause mitochondrial release of cytochrome c, caspase cleavage and nuclear fragmentation. Cell Death Differ 9(11):1172–1184. https://doi.org/10.1038/sj.cdd.4401094

    Article  CAS  PubMed  Google Scholar 

  9. Hoffmann M, Wu YJ, Gerber M, Berger-Rentsch M, Heimrich B, Schwemmle M, Zimmer G (2010) Fusion-active glycoprotein G mediates the cytotoxicity of vesicular stomatitis virus M mutants lacking host shut-off activity. J Gen Virol 91(Pt 11):2782–2793. https://doi.org/10.1099/vir.0.023978-0

    Article  CAS  PubMed  Google Scholar 

  10. Mitta B, Rimann M, Fussenegger M (2005) Detailed design and comparative analysis of protocols for optimized production of high-performance HIV-1-derived lentiviral particles. Metab Eng 7(5–6):426–436. https://doi.org/10.1016/j.ymben.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  11. al Yacoub N, Romanowska M, Haritonova N, Foerster J (2007) Optimized production and concentration of lentiviral vectors containing large inserts. J Gene Med 9(7):579–584. https://doi.org/10.1002/jgm.1052

  12. Kumar M, Keller B, Makalou N, Sutton RE (2001) Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther 12(15):1893–1905. https://doi.org/10.1089/104303401753153947

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Ott CJ, Townsend K, Subbaiah P, Aiyar A, Miller WM (2009) Cholesterol supplementation during production increases the infectivity of retroviral and lentiviral vectors pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G). Biochem Eng J 44(2–3):199–207. https://doi.org/10.1016/j.bej.2008.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ciftci K, Levy RJ (2001) Enhanced plasmid DNA transfection with lysosomotropic agents in cultured fibroblasts. Int J Pharm 218(1–2):81–92

    Article  CAS  PubMed  Google Scholar 

  15. Cribbs AP, Kennedy A, Gregory B, Brennan FM (2013) Simplified production and concentration of lentiviral vectors to achieve high transduction in primary human T cells. BMC Biotechnol 13:98. https://doi.org/10.1186/1472-6750-13-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sakoda T, Kasahara N, Hamamori Y, Kedes L (1999) A high-titer lentiviral production system mediates efficient transduction of differentiated cells including beating cardiac myocytes. J Mol Cell Cardiol 31(11):2037–2047. https://doi.org/10.1006/jmcc.1999.1035

    Article  CAS  PubMed  Google Scholar 

  17. Villa-Diaz LG, Garcia-Perez JL, Krebsbach PH (2010) Enhanced transfection efficiency of human embryonic stem cells by the incorporation of DNA liposomes in extracellular matrix. Stem Cells Dev 19(12):1949–1957. https://doi.org/10.1089/scd.2009.0505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coelen RJ, Jose DG, May JT (1983) The effect of hexadimethrine bromide (polybrene) on the infection of the primate retroviruses SSV 1/SSAV 1 and BaEV. Arch Virol 75(4):307–311

    Article  CAS  PubMed  Google Scholar 

  19. Manning JS, Hackett AJ, Darby NB Jr (1971) Effect of polycations on sensitivity of BALD-3T3 cells to murine leukemia and sarcoma virus infectivity. Appl Microbiol 22(6):1162–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Toyoshima K, Vogt PK (1969) Enhancement and inhibition of avian sarcoma viruses by polycations and polyanions. Virology 38(3):414–426

    Article  CAS  PubMed  Google Scholar 

  21. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Zhang M, Ihrig MM, McManus MT, Gertler FB, Scott ML, Van Parijs L (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33(3):401–406. https://doi.org/10.1038/ng1117.ng1117[pii]

    Article  CAS  PubMed  Google Scholar 

  22. Felgner PL (1990) Particulate systems and polymers for in vitro and in vivo delivery of polynucleotides. Adv Drug Deliv Rev 5(3):163–304

    Article  CAS  Google Scholar 

  23. Howell DP, Krieser RJ, Eastman A, Barry MA (2003) Deoxyribonuclease II is a lysosomal barrier to transfection. Mol Ther 8(6):957–963

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Maurel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Heffernan, C., Maurel, P. (2018). Lentiviral Transduction of Rat Schwann Cells and Dorsal Root Ganglia Neurons for In Vitro Myelination Studies. In: Monje, P., Kim, H. (eds) Schwann Cells. Methods in Molecular Biology, vol 1739. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7649-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7649-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7648-5

  • Online ISBN: 978-1-4939-7649-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics