Skip to main content

Brain Morphometric Techniques Applied to the Study of Traumatic Brain Injury

  • Protocol
  • First Online:
Brain Morphometry

Part of the book series: Neuromethods ((NM,volume 136))

Abstract

Traumatic brain injury (TBI) occurs when an external mechanical force causes brain dysfunction, and it is a major public health concern.

Definitive biomarkers of TBI have not been identified yet, but recent advances in neuroimaging shed new light on TBI pathophysiology. The chapter will first review the different approaches adopted in TBI assessment. It will then focus on the morphometric and volumetric alterations in TBI across various injury stages (severe and acute phases); severities, beginning with mTBI and progressing across the range of severity to severe TBI; and mechanisms.

All the present evidence will be finally discussed with emphasis on the limitations of the currently published research literature, as well as on future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Centers for Disease Control and Prevention (2015) Report to congress on traumatic brain injury in the United States: understanding the public health problem among current and former military personnel. Concussion and Traumatic Brain Injury, CDC Injury Center. N. C. f. I. P. a. C. D. o

    Google Scholar 

  2. Cassidy JD, Carroll LJ, Peloso PM et al (2004) Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO collaborating Centre task force on mild traumatic brain injury. J Rehabil Med 36:28–60. https://doi.org/10.1080/16501960410023732

    Article  Google Scholar 

  3. Bigler ED, Bazarian JJ (2010) Diffusion tensor imaging: a biomarker for mild traumatic brain injury? Neurology 74:626–627. https://doi.org/10.1212/WNL.0b013e3181d3e43a

    Article  PubMed  Google Scholar 

  4. Tate DF, Shenton ME, Bigler ED (2012) Introduction to the brain imaging and behavior special issue on neuroimaging findings in mild traumatic brain injury. Brain Imaging Behav 6:103–107. https://doi.org/10.1007/s11682-012-9185-0

    Article  CAS  PubMed  Google Scholar 

  5. Tate DF, Wilde EA, Bouix S, McCauley SR (2015) Introduction to the brain imaging and behavior special issue: mild traumatic brain injury among active duty service members and veterans. Brain Imaging Behav 9:355–357. https://doi.org/10.1007/s11682-015-9445-x

    Article  PubMed  Google Scholar 

  6. Teasdale G, Maas A, Lecky F et al (2014) The Glasgow coma scale at 40 years: standing the test of time. Lancet Neurol 13:844–854. https://doi.org/10.1016/S1474-4422(14)70120-6

    Article  PubMed  Google Scholar 

  7. Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 304:81–84. https://doi.org/10.1016/S0140-6736(74)91639-0

    Article  Google Scholar 

  8. Reith FCM, Brennan PM, Maas AIR, Teasdale GM (2016) Lack of standardization in the use of the Glasgow coma scale: results of international surveys. J Neurotrauma 33:89–94. https://doi.org/10.1089/neu.2014.3843

    Article  PubMed  Google Scholar 

  9. Edwards SL (2001) Using the Glasgow coma scale: analysis and limitations. Br J Nurs 10:92–101. 10.12968/bjon.2001.10.2.5391

    Article  CAS  PubMed  Google Scholar 

  10. Gabbe BJ, Cameron PA, Finch CF (2003) The status of the Glasgow coma scale. Emerg Med (Fremantle) 15:353–360. https://doi.org/10.1111/j.1742-6723.2006.00867.x

    Article  Google Scholar 

  11. Saatman KE, Duhaime AC, Bullock R et al (2008) Classification of traumatic brain injury for targeted therapies. J Neurotrauma 25:719–738. https://doi.org/10.1089/neu.2008.0586

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nakase-Richardson R, Sepehri A, Sherer M et al (2009) Classification schema of posttraumatic amnesia duration-based injury severity relative to 1-year outcome: analysis of individuals with moderate and severe traumatic brain injury. Arch Phys Med Rehabil 90:17–19. https://doi.org/10.1016/j.apmr.2008.06.030

    Article  PubMed  Google Scholar 

  13. Azouvi P (2000) Neuroimaging correlates of cognitive and functional outcome after traumatic brain injury. Curr Opin Neurol 13:665–669. https://doi.org/10.1097/00019052-200012000-00009

    Article  CAS  PubMed  Google Scholar 

  14. Ruff RM, Iverson GL, Barth JT et al (2009) Recommendations for diagnosing a mild traumatic brain injury: a national academy of neuropsychology education paper. Arch Clin Neuropsychol 24:3–10. https://doi.org/10.1093/arclin/acp006

    Article  PubMed  Google Scholar 

  15. Helmick KM, Spells CA, Malik SZ et al (2015) Traumatic brain injury in the US military: epidemiology and key clinical and research programs. Brain Imaging Behav 9:358–366. https://doi.org/10.1007/s11682-015-9399-z

    Article  PubMed  Google Scholar 

  16. Dall’Acqua P, Johannes S, Mica L et al (2016) Connectomic and surface-based morphometric correlates of acute mild traumatic brain injury. Front Hum Neurosci 10:127. https://doi.org/10.3389/fnhum.2016.00127

    PubMed  PubMed Central  Google Scholar 

  17. Holli KK, Harrison L, Dastidar P et al (2010) Texture analysis of MR images of patients with mild traumatic brain injury. BMC Med Imaging 10:8. https://doi.org/10.1186/1471-2342-10-8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zagorchev L, Meyer C, Stehle T et al (2015) Differences in regional brain volumes two months and one year after mild traumatic brain injury. J Neurotrauma 34:1–24. https://doi.org/10.1089/neu.2014.3831

    Google Scholar 

  19. da Costa L, van Niftrik CB, Crane D et al (2016) Temporal profile of cerebrovascular reactivity impairment, gray matter volumes, and persistent symptoms after mild traumatic head injury. Front Neurol 7:70. https://doi.org/10.3389/fneur.2016.00070

    PubMed  PubMed Central  Google Scholar 

  20. Killgore WDS, Singh P, Kipman M et al (2016) Gray matter volume and executive functioning correlate with time since injury following mild traumatic brain injury. Neurosci Lett 612:238–244. https://doi.org/10.1016/j.neulet.2015.12.033

    Article  CAS  PubMed  Google Scholar 

  21. Dean PJA, Sato JR, Vieira G et al (2015) Long-term structural changes after mTBI and their relation to post-concussion symptoms. Brain Inj 29:1211–1218. https://doi.org/10.3109/02699052.2015.1035334

    Article  Google Scholar 

  22. Cohen BA, Inglese M, Rusinek H et al (2007) Proton MR spectroscopy and MRI-volumetry in mild traumatic brain injury. AJNR Am J Neuroradiol 28:907–913. doi: 28/5/907 [pii]

    CAS  PubMed  Google Scholar 

  23. Little DM, Geary EK, Moynihan M et al (2014) Imaging chronic traumatic brain injury as a risk factor for neurodegeneration. Alzheimers Dement 10:S188–S195. https://doi.org/10.1016/j.jalz.2014.04.002

    Article  PubMed  Google Scholar 

  24. Ross DE, Ochs AL, Seabaugh JM et al (2012) Progressive brain atrophy in patients with chronic neuropsychiatric symptoms after mild traumatic brain injury: a preliminary study. Brain Inj 26:1500–1509. https://doi.org/10.3109/02699052.2012.694570

    Article  PubMed  Google Scholar 

  25. Zhou Y, Kierans A, Kenul D et al (2013) Mild traumatic brain injury: longitudinal regional brain volume changes. Radiology 267:880–890. https://doi.org/10.1148/radiol.13122542

    Article  PubMed  PubMed Central  Google Scholar 

  26. Toth A, Kovacs N, Perlaki G et al (2013) Multi-modal magnetic resonance imaging in the acute and sub-acute phase of mild traumatic brain injury: can we see the difference? J Neurotrauma 30:2–10. https://doi.org/10.1089/neu.2012.2486

    Article  PubMed  Google Scholar 

  27. Maller JJ, Thomson RHS, Pannek K et al (2014) Volumetrics relate to the development of depression after traumatic brain injury. Behav Brain Res 271:147–153. https://doi.org/10.1016/j.bbr.2014.05.047

    Article  PubMed  Google Scholar 

  28. Hofman PA, Stapert SZ, van Kroonenburgh MJ et al (2001) MR imaging, single-photon emission CT, and neurocognitive performance after mild traumatic brain injury. AJNR AmJ Neuroradiol 22:441–449

    CAS  Google Scholar 

  29. Lao Y, Law M, Shi J et al (2015) A T1 and DTI fused 3D corpus callosum analysis in pre- vs. post-season contact sports players. Proc SPIE Int Soc Opt Eng 9287:1–6. https://doi.org/10.1117/12.2072600

    Google Scholar 

  30. Jarrett M, Tam R, Hernandez-Torres E et al (2016) A prospective pilot investigation of brain volume, white matter hyperintensities, and hemorrhagic lesions after mild traumatic brain injury. Front Neurol 7:11. https://doi.org/10.3389/fneur.2016.00011

    Article  PubMed  PubMed Central  Google Scholar 

  31. Owens BD, Kragh JF, Wenke JC et al (2008) Combat wounds in operation Iraqi freedom and operation enduring freedom. J Trauma 64:295–299. https://doi.org/10.1097/TA.0b013e318163b875

    Article  PubMed  Google Scholar 

  32. Hoge CW, McHurk D, Thomas JL et al (2008) Mild traumatic brain injury in U.S. soldiers returning from Iraq. N Engl J Med 358:453–463. https://doi.org/10.1056/NEJMoa072972

    Article  CAS  PubMed  Google Scholar 

  33. Tate DF, York GE, Reid MW et al (2014) Preliminary findings of cortical thickness abnormalities in blast injured service members and their relationship to clinical findings. Brain Imaging Behav 8:102–109. https://doi.org/10.1007/s11682-013-9257-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Corbo V, Salat DH, Amick MM et al (2014) Reduced cortical thickness in veterans exposed to early life trauma. Psychiatry Res Neuroimaging 223:53–60. https://doi.org/10.1016/j.pscychresns.2014.04.013

    Article  PubMed  Google Scholar 

  35. Mac Donald C, Johnson A, Cooper D et al (2013) Cerebellar white matter abnormalities following primary blast injury in US military personnel. PLoS One 8(2):e55823. https://doi.org/10.1371/journal.pone.0055823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Depue BE, Olson-Madden JH, Smolker HR et al (2014) Reduced amygdala volume is associated with deficits in inhibitory control: a voxel- and surface-based morphometric analysis of comorbid PTSD/mild TBI. Biomed Res Int 2014:691505. https://doi.org/10.1155/2014/691505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu Y, McArthur DL, Alger JR et al (2010) Early nonischemic oxidative metabolic dysfunction leads to chronic brain atrophy in traumatic brain injury. J Cereb Blood Flow Metab 30:883–894. https://doi.org/10.1038/jcbfm.2009.263

    Article  CAS  PubMed  Google Scholar 

  38. Brezova V, Goran Moen K, Skandsen T et al (2014) Prospective longitudinal MRI study of brain volumes and diffusion changes during the first year after moderate to severe traumatic brain injury. NeuroImage Clin 5:128–140. https://doi.org/10.1016/j.nicl.2014.03.012

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim J, Avants B, Patel S et al (2008) Structural consequences of diffuse traumatic brain injury: a large deformation tensor-based morphometry study. NeuroImage 39:1014–1026. https://doi.org/10.1016/j.neuroimage.2007.10.005

    Article  PubMed  Google Scholar 

  40. Hillary FG, Rajtmajer SM, Roman CA et al (2014) The rich get richer: brain injury elicits hyperconnectivity in core subnetworks. PLoS One 9(11):e113545. https://doi.org/10.1371/journal.pone.0104021

    Article  Google Scholar 

  41. Konstantinou N, Pettemeridou E, Seimenis I et al (2016) Assessing the relationship between neurocognitive performance and brain volume in chronic moderate-severe traumatic brain injury. Front Neurol 7:29. https://doi.org/10.3389/fneur.2016.00029

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ng K, Mikulis DJ, Glazer J et al (2008) Magnetic resonance imaging evidence of progression of subacute brain atrophy in moderate to severe traumatic brain injury. Arch Phys Med Rehabil 89(12 Suppl):S35–S44. https://doi.org/10.1016/j.apmr.2008.07.006

    Article  PubMed  Google Scholar 

  43. Braskie MN, Klunder AD, Hayashi KM et al (2010) Plaque and tangle imaging and cognition in normal aging and Alzheimer’s disease. Neurobiol Aging 31:1669–1678

    Article  PubMed  Google Scholar 

  44. Hudak A, Warner M, Marquez de la Plata C et al (2011) Brain morphometry changes and depressive symptoms after traumatic brain injury. Psychiatry Res - Neuroimaging 191:160–165. https://doi.org/10.1016/j.pscychresns.2010.10.003

    Article  PubMed  Google Scholar 

  45. Ariza M, Serra-Grabulosa JM, Junqué C et al (2006) Hippocampal head atrophy after traumatic brain injury. Neuropsychologia 44:1956–1961. https://doi.org/10.1016/j.neuropsychologia.2005.11.007

    Article  PubMed  Google Scholar 

  46. Leunissen I, Coxon JP, Caeyenberghs K et al (2014) Subcortical volume analysis in traumatic brain injury: the importance of the fronto-striato-thalamic circuit in task switching. Cortex 51:67–81. https://doi.org/10.1016/j.cortex.2013.10.009

    Article  PubMed  Google Scholar 

  47. Lutkenhoff ES, McArthur DL, Hua X et al (2013) Thalamic atrophy in antero-medial and dorsal nuclei correlates with six-month outcome after severe brain injury. NeuroImage Clin 3:396–404. https://doi.org/10.1016/j.nicl.2013.09.010

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kim J, Parker D, Whyte J et al (2014) Disrupted structural Connectome is associated with both psychometric and real-world neuropsychological impairment in diffuse traumatic brain injury. J Int Neuropsychol Soc 20:887–896. https://doi.org/10.1017/S1355617714000812

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sidaros A, Skimminge A, Liptrot MG et al (2009) Long-term global and regional brain volume changes following severe traumatic brain injury: a longitudinal study with clinical correlates. NeuroImage 44:1–8. https://doi.org/10.1016/j.neuroimage.2008.08.030

    Article  PubMed  Google Scholar 

  50. Ubukata S, Ueda K, Sugihara G et al (2016) Corpus callosum pathology as a potential surrogate marker of cognitive impairment in diffuse axonal injury. J Neuropsychiatry Clin Neurosci 28:97–103. https://doi.org/10.1176/appi.neuropsych.15070159

    Article  PubMed  Google Scholar 

  51. Shah S, Yallampalli R, Merkley TL et al (2012) Diffusion tensor imaging and volumetric analysis of the ventral striatum in adults with traumatic brain injury. Brain Inj 26:201–210. https://doi.org/10.3109/02699052.2012.654591

    Article  PubMed  Google Scholar 

  52. Palacios EM, Sala-Llonch R, Junque C et al (2013) Long-term declarative memory deficits in diffuse TBI: correlations with cortical thickness, white matter integrity and hippocampal volume. Cortex 49:646–657. https://doi.org/10.1016/j.cortex.2012.02.011

    Article  PubMed  Google Scholar 

  53. Wang B, Prastawa M, Irimia A, et al (2013) Analyzing imaging biomarkers for traumatic brain injury using 4d modeling of longitudinal MRI. In: 2013 I.E. 10th Int. Symp. Biomed. Imaging. pp 1392–1395

    Google Scholar 

  54. Merkley TL, Larson MJ, Bigler ED et al (2013) Structural and functional changes of the cingulate gyrus following traumatic brain injury: relation to attention and executive skills. J Int Neuropsychol Soc 19:899–910. https://doi.org/10.1017/S135561771300074X

    Article  PubMed  Google Scholar 

  55. Fisher AC, Rushby JA, McDonald S et al (2015) Neurophysiological correlates of dysregulated emotional arousal in severe traumatic brain injury. Clin Neurophysiol 126:314–324. https://doi.org/10.1016/j.clinph.2014.05.033

    Article  PubMed  Google Scholar 

  56. Tomaiuolo F, Carlesimo GA, Di Paola M et al (2004) Gross morphology and morphometric sequelae in the hippocampus, fornix, and corpus callosum of patients with severe non-missile traumatic brain injury without macroscopically detectable lesions: a T1 weighted MRI study. J Neurol Neurosurg Psychiatry 75:1314–1322. https://doi.org/10.1136/jnnp.2003.017046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Di Paola M, Phillips O, Costa A et al (2014) Selective cognitive dysfunction is related to a specific pattern of cerebral damage in persons with severe traumatic brain injury. J Head Trauma Rehabil 30:1. https://doi.org/10.1097/HTR.0000000000000063

    Google Scholar 

  58. Uruma G, Hashimoto K, Abo M (2015) Evaluation of regional white matter volume reduction after diffuse axonal injury using voxel-based Morphometry. Magn Reson Med Sci 14:183–192. https://doi.org/10.2463/mrms.2014-0104

    Article  PubMed  Google Scholar 

  59. Marcoux J, McArthur DA, Miller C et al (2008) Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med 36:2871–2877. https://doi.org/10.1097/CCM.0b013e318186a4a0

    Article  CAS  PubMed  Google Scholar 

  60. MacKenzie JD, Siddiqi F, Babb JS et al (2002) Brain atrophy in mild or moderate traumatic brain injury: a longitudinal quantitative analysis. AJNR Am J Neuroradiol 23:1509–1515. https://doi.org/10.1007/BF01402368

    PubMed  Google Scholar 

  61. Ding K, Marquez de la Plata C, Wang JY et al (2008) Cerebral atrophy after traumatic white matter injury: correlation with acute neuroimaging and outcome. J Neurotrauma 25:1433–1440. https://doi.org/10.1089/neu.2008.0683

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gale SD, Johnson SC, Bigler ED, Blatter DD (1995) Nonspecific white matter degeneration following traumatic brain injury. J Int Neuropsychol Soc 1:17–28. https://doi.org/10.1017/S1355617700000060

    Article  CAS  PubMed  Google Scholar 

  63. Gale SD, Baxter L, Roundy N, Johnson SC (2005) Traumatic brain injury and grey matter concentration: a preliminary voxel based morphometry study. J Neurol Neurosurg Psychiatry 76:984–988. https://doi.org/10.1136/jnnp.2004.036210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Trivedi MA, Ward MA, Hess TM et al (2007) Longitudinal changes in global brain volume between 79 and 409 days after traumatic brain injury: relationship with duration of coma. J Neurotrauma 24:766–771. https://doi.org/10.1089/neu.2006.0205

    Article  PubMed  PubMed Central  Google Scholar 

  65. Warner MA, Youn TS, Davis T et al (2010) Regionally selective atrophy after traumatic axonal injury. Arch Neurol 67:1336–1344. https://doi.org/10.1001/archneurol.2010.149

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yount R, Raschke KA, Biru M et al (2002) Traumatic brain injury and atrophy of the cingulate gyrus. J Neuropsychiatry Clin Neurosci 14:416–423

    Article  PubMed  Google Scholar 

  67. Vannorsdall TD, Cascella NG, Rao V et al (2010) A morphometric analysis of Neuroanatomic abnormalities in traumatic brain injury. J Neuropsychiatry Clin Neurosci 22:173–181. https://doi.org/10.1176/jnp.2010.22.2.173

    Article  PubMed  Google Scholar 

  68. Levine B, Kovacevic N, Nica EI et al (2008) The Toronto traumatic brain injury study: injury severity and quantified MRI. Neurology 70:771–778. https://doi.org/10.1212/01.wnl.0000304108.32283.aa

    Article  CAS  PubMed  Google Scholar 

  69. Wilde EA, Bigler ED, Pedroza C, Ryser DK (2006) Post-traumatic amnesia predicts long-term cerebral atrophy in traumatic brain injury. Brain Inj 20:695–699. https://doi.org/10.1080/02699050600744079

    Article  PubMed  Google Scholar 

  70. Guild EB, Levine B (2015) Functional correlates of midline brain volume loss in chronic traumatic brain injury. J Int Neuropsychol Soc 21(8):650–655. https://doi.org/10.1017/S1355617715000600

    Article  PubMed  Google Scholar 

  71. Levine B, Kovacevic N, Nica EI et al (2013) Quantified MRI and cognition in TBI with diffuse and focal damage. NeuroImage Clin 2:534–541. https://doi.org/10.1016/j.nicl.2013.03.015

    Article  PubMed  PubMed Central  Google Scholar 

  72. Warner MA, de la Plata CM, Spence J et al (2010) Assessing spatial relationships between axonal integrity, regional brain volumes, and neuropsychological outcomes after traumatic axonal injury. J Neurotrauma 27:2121–2130. https://doi.org/10.1089/neu.2010.1429

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wilde EA, Bigler ED, Gandhi PV et al (2004) Alcohol abuse and traumatic brain injury: quantitative magnetic resonance imaging and neuropsychological outcome. J Neurotrauma 21:137–147. https://doi.org/10.1089/089771504322778604

    Article  PubMed  Google Scholar 

  74. Bendlin BB, Ries ML, Lazar M et al (2008) Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. NeuroImage 42:503–514. https://doi.org/10.1016/j.neuroimage.2008.04.254

    Article  PubMed  PubMed Central  Google Scholar 

  75. Spitz G, Bigler ED, Abildskov T et al (2013) Regional cortical volume and cognitive functioning following traumatic brain injury. Brain Cogn 83:34–44. https://doi.org/10.1016/j.bandc.2013.06.007

    Article  PubMed  Google Scholar 

  76. Kim J, Avants B, Whyte J, Gee JC (2013) Methodological considerations in longitudinal morphometry of traumatic brain injury. Front Hum Neurosci 7:52. https://doi.org/10.3389/fnhum.2013.00052

    PubMed  PubMed Central  Google Scholar 

  77. Bergeson AG, Lundin R, Parkinson RB et al (2004) Clinical rating of cortical atrophy and cognitive correlates following traumatic brain injury. Clin Neuropsychol 18:509–520. https://doi.org/10.1080/1385404049052414

    Article  PubMed  Google Scholar 

  78. Schönberger M, Ponsford J, Reutens D et al (2009) The relationship between age, injury severity, and MRI findings after traumatic brain injury. J Neurotrauma 26:2157–2167. https://doi.org/10.1089/neu.2009.0939

    Article  PubMed  Google Scholar 

  79. Fujiwara E, Schwartz ML, Gao F et al (2008) Ventral frontal cortex functions and quantified MRI in traumatic brain injury. Neuropsychologia 46:461–474. https://doi.org/10.1016/j.neuropsychologia.2007.08.027

    Article  PubMed  Google Scholar 

  80. Jorge RE, Robinson RG, Moser D et al (2004) Major depression following traumatic brain injury. Arch Gen Psychiatry 61:42–50. https://doi.org/10.1001/archpsyc.61.1.42

    Article  PubMed  Google Scholar 

  81. Jorge RE, Acion L, Starkstein SE, Magnotta V (2007) Hippocampal volume and mood disorders after traumatic brain injury. Biol Psychiatry 62:332–338. https://doi.org/10.1016/j.biopsych.2006.07.024

    Article  PubMed  Google Scholar 

  82. Anderson CV, Bigler ED, Blatter DD (1995) Frontal lobe lesions, diffuse damage, and neuropsychological functioning in traumatic brain-injured patients. J Clin Exp Neuropsychol 17:900–908. https://doi.org/10.1080/01688639508402438

    Article  CAS  PubMed  Google Scholar 

  83. Bigler ED, Johnson SC, Anderson CV et al (1996) Traumatic brain injury and memory: the role of hippocampal atrophy. Neuropsychology 10:333–342. https://doi.org/10.1037/0894-4105.10.3.333

    Article  Google Scholar 

  84. Green RE, Colella B, Maller JJ et al (2014) Scale and pattern of atrophy in the chronic stages of moderate-severe TBI. Front Hum Neurosci 8:67. https://doi.org/10.3389/fnhum.2014.00067

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tate DF, Khedraki R, Neeley ES et al (2011) Cerebral volume loss, cognitive deficit, and neuropsychological performance: comparative measures of brain atrophy: II. Traumatic brain injury. J Int Neuropsychol Soc 17:308–316. https://doi.org/10.1017/S1355617710001670

    Article  PubMed  Google Scholar 

  86. Kesler SR, Adams HF, Blasey CM, Bigler ED (2003) Premorbid intellectual functioning, education, and brain size in traumatic brain injury: an investigation of the cognitive reserve hypothesis. Appl Neuropsychol 10:153–162. https://doi.org/10.1207/S15324826AN1003_04

    Article  PubMed  Google Scholar 

  87. Himanen L, Portin R, Isoniemi H et al (2005) Cognitive functions in relation to MRI findings 30 years after traumatic brain injury. Brain Inj 19:93–100. https://doi.org/10.1080/02699050410001720031

    Article  PubMed  Google Scholar 

  88. Strangman GE, O’Neil-Pirozzi TM, Supelana C et al (2010) Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury. Front Hum Neurosci 4:182. https://doi.org/10.3389/fnhum.2010.00182

    Article  PubMed  PubMed Central  Google Scholar 

  89. Takayanagi Y, Gerner G, Takayanagi M et al (2013) Hippocampal volume reduction correlates with apathy in traumatic brain injury, but not schizophrenia. J Neuropsychiatry Clin Neurosci 25:292–301. https://doi.org/10.1176/appi.neuropsych.12040093

    Article  PubMed  Google Scholar 

  90. Farbota KDM, Sodhi A, Bendlin BB et al (2012) Longitudinal volumetric changes following traumatic brain injury: a tensor-based Morphometry study. J Int Neuropsychol Soc 18:1–13. https://doi.org/10.1017/S1355617712000835

    Article  Google Scholar 

  91. Johnson SC, Pinkston JB, Bigler ED, Blatter DD (1996) Corpus Callosum morphology in normal controls and traumatic brain injury: sex differences, mechanisms of injury, and neuropsychological correlates. Neuropsychology 10:408–415. https://doi.org/10.1037/0894-4105.10.3.408

    Article  Google Scholar 

  92. Bigler ED, Blatter DD, Anderson CV et al (1997) Hippocampal volume in normal aging and traumatic brain injury. AJNR Am J Neuroradiol 18:11–23

    CAS  PubMed  Google Scholar 

  93. Tate DF, Bigler ED (2000) Fornix and hippocampal atrophy in traumatic brain injury. Learn Mem 7:442–446. https://doi.org/10.1101/lm.33000

    Article  CAS  PubMed  Google Scholar 

  94. Isoniemi H, Kurki T, Tenovuo O et al (2006) Hippocampal volume, brain atrophy, and APOE genotype after traumatic brain injury. Neurology 67:756–760. https://doi.org/10.1212/01.wnl.0000234140.64954.12

    Article  CAS  PubMed  Google Scholar 

  95. Wilde EA, Hunter JV, Newsome MR et al (2005) Frontal and temporal morphometric findings on MRI in children after moderate to severe traumatic brain injury. J Neurotrauma 22:333–344. https://doi.org/10.1089/neu.2005.22.333

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo E. Jorge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wilde, E.A., Taylor, B.A., Jorge, R.E. (2018). Brain Morphometric Techniques Applied to the Study of Traumatic Brain Injury. In: Spalletta, G., Piras, F., Gili, T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7647-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7647-8_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7645-4

  • Online ISBN: 978-1-4939-7647-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics