Skip to main content

Brain Morphometry: Schizophrenia

  • Protocol
  • First Online:
Book cover Brain Morphometry

Part of the book series: Neuromethods ((NM,volume 136))

Abstract

During the last three decades, neuroimaging techniques have emerged as an essential tool for the noninvasive examination of subtle brain dysfunctions in psychiatric patient populations. These techniques helped clarify in vivo some of the principal neurobiological characteristic of the quintessential major mental disorder, schizophrenia, providing evidence for potential biomarkers that might improve the diagnostic process, therapeutic monitoring, and outcomes. Here, we describe the main brain morphometric techniques (including volumetric, shape analysis, and microstructural techniques) currently used in research on schizophrenia and summarize the results of the most important studies in the field. This chapter aims at providing an exhaustive description of the state-of-the-art in vivo brain morphology in schizophrenia in order to better characterize the disorder from a neurobiological point of view, thus providing a comprehensive background for further research on this topic. A general picture emerges in which schizophrenia is characterized by widespread brain cortical and subcortical, structural, and microstructural anomalies since the early phases of the course of illness. Volumetric, shape, and microstructural disruptions in structures of the fronto-temporo-parietal network are predominant both cross-sectionally and in terms of altered developmental trajectories and outcome prediction. Future studies on brain morphometric indices in schizophrenia should focus on their reliability as predictors of treatment response through longitudinal designs in large samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saha S, Chant D, Welham J, McGrath J (2005) A systematic review of the prevalence of schizophrenia. PLoS Med 2:0413–0433

    Article  Google Scholar 

  2. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, vol XLIV. American Psychiatric Association, Washington, DC, p 947 S

    Google Scholar 

  3. Spalletta G, De Rossi P, Piras F, Iorio M, Dacquino C et al (2015) Brain white matter microstructure in deficit and non-deficit subtypes of schizophrenia. Psychiatry Res Neuroimaging 231:252–261

    Article  PubMed  Google Scholar 

  4. Dazzan P (2014) Neuroimaging biomarkers to predict treatment response in schizophrenia: the end of 30 years of solitude? Dialogues Clin Neurosci 16:491–503

    PubMed  PubMed Central  Google Scholar 

  5. Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J et al (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361:281–288

    Article  PubMed  Google Scholar 

  6. Carletti F, Woolley JB, Bhattacharyya S, Perez-Iglesias R, Fusar-Poli P et al (2012) Alterations in white matter evident before the onset of psychosis. Schizophr Bull 38:1170–1179

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E (2008) The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry 165:1015–1023

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chiapponi C, Piras F, Fagioli S, Piras F, Caltagirone C et al (2013) Age-related brain trajectories in schizophrenia: a systematic review of structural MRI studies. Psychiatry Res 214:83–93

    Article  PubMed  Google Scholar 

  9. Perlini C, Bellani M, Brambilla P (2012) Structural imaging techniques in schizophrenia. Acta Psychiatr Scand 126:235–242

    Article  CAS  PubMed  Google Scholar 

  10. Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49:1–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andreone N, Tansella M, Cerini R, Versace A, Rambaldelli G et al (2007) Cortical white-matter microstructure in schizophrenia diffusion imaging study. Br J Psychiatry 191:113–119

    Article  CAS  PubMed  Google Scholar 

  12. Levitt JJ, Bobrow L, Lucia D, Srinivasan P (2010) A selective review of volumetric and morphometric imaging in schizophrenia. Curr Top Behav Neurosci 4:243–281

    Article  PubMed  Google Scholar 

  13. Baiano M, David A, Versace A, Churchill R, Balestrieri M et al (2007) Anterior cingulate volumes in schizophrenia: a systematic review and a meta-analysis of MRI studies. Schizophr Res 93:1–12

    Article  CAS  PubMed  Google Scholar 

  14. Olabi B, Ellison-Wright I, McIntosh AM, Wood SJ, Bullmore E et al (2011) Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol Psychiatry 70:88–96

    Article  PubMed  Google Scholar 

  15. Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26:839–851

    Article  PubMed  Google Scholar 

  16. Keller SS, Wilke M, Wieshmann UC, Sluming VA, Roberts N (2004) Comparison of standard and optimized voxel-based morphometry for analysis of brain changes associated with temporal lobe epilepsy. NeuroImage 23:860–868

    Article  PubMed  Google Scholar 

  17. Mechelli A, Price C, Friston KJ, Ashburner J (2005) Voxel-based morphometry of the human brain: methods and applications. Curr Med Imaging Rev 1:105–113

    Article  Google Scholar 

  18. Fornito A, Yücel M, Patti J, Wood SJ, Pantelis C (2009) Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophr Res 108:104–113

    Article  CAS  PubMed  Google Scholar 

  19. Bora E, Fornito A, Radua J, Walterfang M, Seal M et al (2011) Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophr Res 127:46–57

    Article  PubMed  Google Scholar 

  20. Fusar-Poli P, Radua J, McGuire P, Borgwardt S (2012) Neuroanatomical maps of psychosis onset: voxel-wise meta-analysis of antipsychotic-naive VBM studies. Schizophr Bull 38:1297–1307

    Article  PubMed  Google Scholar 

  21. Fusar-Poli P, Smieskova R, Kempton MJ, Ho BC, Andreasen NC et al (2013) Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies. Neurosci Biobehav Rev 37:1680–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Andreasen NC, Liu D, Ziebell S, Vora A, Ho B-C (2013) Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: a prospective longitudinal MRI study. Am J Psychiatry 170:609–615

    Article  PubMed  Google Scholar 

  23. Van Essen DC, Drury HA (1997) Structural and functional analyses of human cerebral cortex using a surface-based atlas. J Neurosci 17:7079–7102

    PubMed  Google Scholar 

  24. Raznahan A, Shaw P, Lalonde F, Stockman M, Wallace GL et al (2011) How does your cortex grow? J Neurosci 31:7174–7177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ashburner J, Friston KJ (2000) Voxel-based morphometry--the methods. NeuroImage 11:805–821

    Article  CAS  PubMed  Google Scholar 

  26. Narr KL, Bilder RM, Toga AW, Woods RP, Rex DE et al (2005) Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cereb Cortex 15:708–719

    Article  PubMed  Google Scholar 

  27. Lewis DA (1997) Development of the prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology 16:385–398

    Article  CAS  PubMed  Google Scholar 

  28. McGlashan TH, Hoffman RE (2000) Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 57:637–648

    Article  CAS  PubMed  Google Scholar 

  29. Choi KH, Zepp ME, Higgs BW, Weickert CS, Webster MJ (2009) Expression profiles of schizophrenia susceptibility genes during human prefrontal cortical development. J Psychiatry Neurosci 34:450–458

    PubMed  PubMed Central  Google Scholar 

  30. Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M et al (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60:878–888

    Article  PubMed  Google Scholar 

  31. Goldman AL, Pezawas L, Mattay VS, Fischl B, Verchinski BA et al (2009) Widespread reductions of cortical thickness in schizophrenia and spectrum disorders and evidence of heritability. Arch Gen Psychiatry 66:467–477

    Article  PubMed  PubMed Central  Google Scholar 

  32. Crespo-Facorro B, Roiz-Santiáñez R, Pérez-Iglesias R, Rodriguez-Sanchez JM, Mata I et al (2011) Global and regional cortical thinning in first-episode psychosis patients: relationships with clinical and cognitive features. Psychol Med 41:1449–1460

    Article  CAS  PubMed  Google Scholar 

  33. Rimol LM, Nesvåg R, Hagler DJ, Bergmann O, Fennema-Notestine C et al (2012) Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. Biol Psychiatry 71:552–560

    Article  PubMed  Google Scholar 

  34. Yoon U, Lee J-M, Im K, Shin Y-W, Cho BH et al (2007) Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia. NeuroImage 34:1405–1415

    Article  PubMed  Google Scholar 

  35. Byun MS, Kim JS, Jung WH, Jang JH, Choi J-S et al (2012) Regional cortical thinning in subjects with high genetic loading for schizophrenia. Schizophr Res 141:197–203

    Article  PubMed  Google Scholar 

  36. Sprooten E, Papmeyer M, Smyth AM, Vincenz D, Honold S et al (2013) Cortical thickness in first-episode schizophrenia patients and individuals at high familial risk: a cross-sectional comparison. Schizophr Res 151:259–264

    Article  PubMed  Google Scholar 

  37. Yang Y, Nuechterlein KH, Phillips O, Hamilton LS, Subotnik KL et al (2010) The contributions of disease and genetic factors towards regional cortical thinning in schizophrenia: the UCLA family study. Schizophr Res 123:116–125

    Article  PubMed  PubMed Central  Google Scholar 

  38. Boos HBM, Cahn W, van Haren NEM, Derks EM, Brouwer RM et al (2012) Focal and global brain measurements in siblings of patients with schizophrenia. Schizophr Bull 38:814–825

    Article  PubMed  Google Scholar 

  39. Brauns S, Gollub RL, Roffman JL, Yendiki A, Ho B-C et al (2011) DISC1 is associated with cortical thickness and neural efficiency. NeuroImage 57:1591–1600

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schultz CC, Nenadic I, Koch K, Wagner G, Roebel M et al (2011) Reduced cortical thickness is associated with the glutamatergic regulatory gene risk variant DAOA Arg30Lys in schizophrenia. Neuropsychopharmacology 36:1747–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bergmann O, Haukvik UK, Brown AA, Rimol LM, Hartberg CB et al (2013) ZNF804A and cortical thickness in schizophrenia and bipolar disorder. Psychiatry Res 212:154–157

    Article  CAS  PubMed  Google Scholar 

  42. Blasi G, Napolitano F, Ursini G, Di Giorgio A, Caforio G et al (2013) Association of GSK-3β genetic variation with GSK-3β expression, prefrontal cortical thickness, prefrontal physiology, and schizophrenia. Am J Psychiatry 170:868–876

    Article  PubMed  Google Scholar 

  43. Walton E, Geisler D, Hass J, Liu J, Turner J et al (2013) The impact of genome-wide supported schizophrenia risk variants in the neurogranin gene on brain structure and function. PLoS One 8:e76815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van Haren NEM, Schnack HG, Cahn W, van den Heuvel MP, Lepage C et al (2011) Changes in cortical thickness during the course of illness in schizophrenia. Arch Gen Psychiatry 68:871–880

    Article  PubMed  Google Scholar 

  45. Ahmed M, Cannon DM, Scanlon C, Holleran L, Schmidt H et al (2015) Progressive brain atrophy and cortical thinning in schizophrenia after commencing clozapine treatment. Neuropsychopharmacology 40:2409–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alexander-Bloch AF, Reiss PT, Rapoport J, McAdams H, Giedd JN et al (2014) Abnormal cortical growth in schizophrenia targets normative modules of synchronized development. Biol Psychiatry 76:438–446

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nenadic I, Yotter RA, Sauer H, Gaser C (2015) Patterns of cortical thinning in different subgroups of schizophrenia. Br J Psychiatry 206:479–483

    Article  PubMed  Google Scholar 

  48. Kirkpatrick B, Buchanan RW (1990) The neural basis of the deficit syndrome of schizophrenia. J Nerv Ment Dis 178:545–555

    Article  CAS  PubMed  Google Scholar 

  49. Takayanagi M, Wentz J, Takayanagi Y, Schretlen DJ, Ceyhan E et al (2013) Reduced anterior cingulate gray matter volume and thickness in subjects with deficit schizophrenia. Schizophr Res 150:484–490

    Article  PubMed  PubMed Central  Google Scholar 

  50. Voineskos AN, Foussias G, Lerch J, Felsky D, Remington G et al (2013) Neuroimaging evidence for the deficit subtype of schizophrenia. JAMA Psychiat 70:472–480

    Article  Google Scholar 

  51. Chen X, Liang S, Pu W, Song Y, Mwansisya TE et al (2015) Reduced cortical thickness in right Heschl’s gyrus associated with auditory verbal hallucinations severity in first-episode schizophrenia. BMC Psychiatry 15:152

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rimol LM, Hartberg CB, Nesvåg R, Fennema-Notestine C, Hagler DJ et al (2010) Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biol Psychiatry 68:41–50

    Article  PubMed  Google Scholar 

  53. Knöchel C, Reuter J, Reinke B, Stäblein M, Marbach K et al (2016) Cortical thinning in bipolar disorder and schizophrenia. Schizophr Res 172:78–85

    Article  PubMed  Google Scholar 

  54. Mamah D, Alpert KI, Barch DM, Csernansky JG, Wang L (2016) Subcortical neuromorphometry in schizophrenia spectrum and bipolar disorders. NeuroImage Clin 11:276–286

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang L, Mamah D, Harms MP, Karnik M, Price JL et al (2008) Progressive deformation of deep brain nuclei and hippocampal-amygdala formation in schizophrenia. Biol Psychiatry 64:1060–1068

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mamah D, Barch DM, Csernansky JG (2009) Neuromorphometric measures as endophenotypes of schizophrenia spectrum disorders. In: Ritsner MS (ed) The handbook of neuropsychiatric biomarkers, endophenotypes and genes. Springer, Amsterdam, pp 87–122

    Chapter  Google Scholar 

  57. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(Suppl 1):S208–S219

    Article  PubMed  Google Scholar 

  58. Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 56:907–922

    Article  PubMed  PubMed Central  Google Scholar 

  59. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44:83–98

    Article  PubMed  Google Scholar 

  60. Beg M, Miller M, Trouve A, Younes L (2005) Computing large deformation metric mapping via geodesic flows of diffeomorphisms. Int J Comput Vis 61:139–157

    Article  Google Scholar 

  61. Csernansky JG, Wang L, Jones D, Rastogi-Cruz D, Posener JA et al (2002) Hippocampal deformities in schizophrenia characterized by high dimensional brain mapping. Am J Psychiatry 159:2000–2006

    Article  PubMed  Google Scholar 

  62. Qiu A, Tuan T, Woon P, Abdul-Rahman M, Graham S et al (2010) Hippocampal-cortical structural connectivity disruptions in schizophrenia: an integrated perspective from hippocampal shape, cortical thickness, and integrity of white matter bundles. NeuroImage 52:1181–1189

    Article  PubMed  Google Scholar 

  63. Styner M, Lieberman JA, Pantazis D, Gerig G (2004) Boundary and medial shape analysis of the hippocampus in schizophrenia. Med Image Anal 8:197–203

    Article  PubMed  Google Scholar 

  64. Shenton ME, Gerig G, McCarley RW, Székely G, Kikinis R (2002) Amygdala-hippocampal shape differences in schizophrenia: the application of 3D shape models to volumetric MR data. Psychiatry Res 115:15–35

    Article  PubMed  PubMed Central  Google Scholar 

  65. Csernansky JG, Schindler MK, Splinter NR, Wang L, Gado M et al (2004) Abnormalities of thalamic volume and shape in schizophrenia. Am J Psychiatry 161:896–902

    Article  PubMed  Google Scholar 

  66. Smith MJ, Wang L, Cronenwett W, Mamah D, Barch DM et al (2011) Thalamic morphology in schizophrenia and schizoaffective disorder. J Psychiatr Res 45:378–385

    Article  PubMed  Google Scholar 

  67. Mamah D, Harms MP, Barch D, Styner M, Lieberman JA et al (2012) Hippocampal shape and volume changes with antipsychotics in early stage psychotic illness. Front Psych 3:96

    Google Scholar 

  68. Zierhut KC, Graßmann R, Kaufmann J, Steiner J, Bogerts B et al (2013) Hippocampal CA1 deformity is related to symptom severity and antipsychotic dosage in schizophrenia. Brain 136:804–814

    Article  PubMed  Google Scholar 

  69. Dean DJ, Orr JM, Bernard JA, Gupta T, Pelletier-Baldelli A et al (2016) Hippocampal shape abnormalities predict symptom progression in neuroleptic-free youth at ultrahigh risk for psychosis. Schizophr Bull 42:161–169

    PubMed  Google Scholar 

  70. Haller JW, Christensen GE, Joshi SC, Newcomer JW, Miller MI et al (1996) Hippocampal MR imaging morphometry by means of general pattern matching. Radiology 199:787–791

    Article  CAS  PubMed  Google Scholar 

  71. Csernansky JG, Joshi S, Wang L, Haller JW, Gado M et al (1998) Hippocampal morphometry in schizophrenia by high dimensional brain mapping. Proc Natl Acad Sci U S A 95:11406–11411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang L, Joshi SC, Miller MI, Csernansky JG (2001) Statistical analysis of hippocampal asymmetry in schizophrenia. NeuroImage 14:531–545

    Article  CAS  PubMed  Google Scholar 

  73. Womer FY, Wang L, Alpert KI, Smith MJ, Csernansky JG et al (2014) Basal ganglia and thalamic morphology in schizophrenia and bipolar disorder. Psychiatry Res 223:75–83

    Article  PubMed  PubMed Central  Google Scholar 

  74. Danivas V, Kalmady SV, Venkatasubramanian G, Gangadhar BN (2013) Thalamic shape abnormalities in antipsychotic naïve schizophrenia. Indian J Psychol Med 35:34–38

    Article  PubMed  PubMed Central  Google Scholar 

  75. Canu E, Agosta F, Filippi M (2015) A selective review of structural connectivity abnormalities of schizophrenic patients at different stages of the disease. Schizophr Res 161:19–28

    Article  PubMed  Google Scholar 

  76. Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14:322–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Evans AC (2013) Networks of anatomical covariance. NeuroImage 80:489–504

    Article  CAS  PubMed  Google Scholar 

  78. Zugman A, Assunção I, Vieira G, Gadelha A, White TP et al (2015) Structural covariance in schizophrenia and first-episode psychosis: an approach based on graph analysis. J Psychiatr Res 71:89–96

    Article  PubMed  Google Scholar 

  79. Fornito A, Bullmore ET (2015) Reconciling abnormalities of brain network structure and function in schizophrenia. Curr Opin Neurobiol 30:44–50

    Article  CAS  PubMed  Google Scholar 

  80. Ratnanather JT, Poynton CB, Pisano DV, Crocker B, Postell E et al (2013) Morphometry of superior temporal gyrus and planum temporale in schizophrenia and psychotic bipolar disorder. Schizophr Res 150:476–483

    Article  PubMed  Google Scholar 

  81. Kim SH, Lee J-M, Kim H-P, Jang DP, Shin Y-W et al (2005) Asymmetry analysis of deformable hippocampal model using the principal component in schizophrenia. Hum Brain Mapp 25:361–369

    Article  PubMed  Google Scholar 

  82. Buchanan RW, Francis A, Arango C, Miller K, Lefkowitz DM et al (2004) Morphometric assessment of the heteromodal association cortex in schizophrenia. Am J Psychiatry 161:322–331

    Article  PubMed  Google Scholar 

  83. Breier A, Buchanan RW, Elkashef A, Munson RC, Kirkpatrick B et al (1992) Brain morphology and schizophrenia a magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures. Arch Gen Psychiatry 49:921–926

    Article  CAS  PubMed  Google Scholar 

  84. Mitelman SA, Buchsbaum MS, Brickman AM, Shihabuddin L (2005) Cortical intercorrelations of frontal area volumes in schizophrenia. NeuroImage 27:753–770

    Article  PubMed  Google Scholar 

  85. Mitelman SA, Shihabuddin L, Brickman AM, Buchsbaum MS (2005) Cortical intercorrelations of temporal area volumes in schizophrenia. Schizophr Res 76:207–229

    Article  PubMed  Google Scholar 

  86. Woodruff PW, Wright IC, Shuriquie N, Russouw H, Rushe T et al (1997) Structural brain abnormalities in male schizophrenics reflect fronto-temporal dissociation. Psychol Med 27:1257–1266

    Article  CAS  PubMed  Google Scholar 

  87. Abbs B, Liang L, Makris N, Tsuang M, Seidman LJ et al (2011) Covariance modeling of MRI brain volumes in memory circuitry in schizophrenia: sex differences are critical. NeuroImage 56:1865–1874

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mitelman SA, Brickman AM, Shihabuddin L, Newmark R, Chu KW et al (2005) Correlations between MRI-assessed volumes of the thalamus and cortical Brodmann’s areas in schizophrenia. Schizophr Res 75:265–281

    Article  PubMed  Google Scholar 

  89. Mitelman SA, Byne W, Kemether EM, Hazlett EA, Buchsbaum MS (2006) Correlations between volumes of the pulvinar, centromedian, and mediodorsal nuclei and cortical Brodmann’s areas in schizophrenia. Neurosci Lett 392:16–21

    Article  CAS  PubMed  Google Scholar 

  90. Wheeler AL, Voineskos AN (2014) A review of structural neuroimaging in schizophrenia: from connectivity to connectomics. Front Hum Neurosci 8:653

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  92. Telesford QK, Simpson SL, Burdette JH, Hayasaka S, Laurienti PJ (2011) The brain as a complex system: using network science as a tool for understanding the brain. Brain Connect 1:295–308

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR et al (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28:9239–9248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang Y, Lin L, Lin C-P, Zhou Y, Chou K-H et al (2012) Abnormal topological organization of structural brain networks in schizophrenia. Schizophr Res 141:109–118

    Article  PubMed  Google Scholar 

  95. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15:435–455

    Article  PubMed  Google Scholar 

  96. Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage 73:239–254

    Article  PubMed  Google Scholar 

  97. Marner L, Nyengaard JR, Tang Y, Pakkenberg B (2003) Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 462:144–152

    Article  PubMed  Google Scholar 

  98. Peters A, Sethares C (2002) Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey. J Comp Neurol 442:277–291

    Article  PubMed  Google Scholar 

  99. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505

    Article  PubMed  Google Scholar 

  100. Ellison-Wright I, Bullmore E (2009) Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res 108:3–10

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Spalletta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chiapponi, C., De Rossi, P., Piras, F., Gili, T., Spalletta, G. (2018). Brain Morphometry: Schizophrenia. In: Spalletta, G., Piras, F., Gili, T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7647-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7647-8_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7645-4

  • Online ISBN: 978-1-4939-7647-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics