Skip to main content

Brain Morphometry: Alzheimer’s Disease

  • Protocol
  • First Online:
Brain Morphometry

Part of the book series: Neuromethods ((NM,volume 136))

Abstract

Brains suffering from Alzheimer’s disease show pronounced morphological modifications, with ample volumetric reduction of neural tissue. While particularly visible during the most severe disease stages, these changes are more subtle at the prodromal stage, which is the moment when a clinical diagnosis should be ideally reached. A large body of research has tried to disentangle the nature of such modifications, modeling the regional anatomical variability observed at various disease stages in samples and cohorts, implementing a number of different methodological avenues. The result is a complex picture in which brain morphology is not exclusively affected by disease processes, but is also under the influence of a large series of additional variables, which all contribute to the resulting phenotype via a tight network of multiple biological mechanisms. As a consequence, the study of morphological changes in AD highlights a sensible lack of clinical specificity. Despite these limitations, however, a large body of publications has highlighted the importance of brain morphology for the characterization of different phenotypic expressions of this disease and for the quantification of treatment effects.

“(…) the monster got part of your wonderful brain. But what did you ever get from him?”

Inga, Young Frankenstein, 1974

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Opara JA (2012) Activities of daily living and quality of life in Alzheimer disease. J Med Life 5:162–167

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191

    Article  PubMed  Google Scholar 

  3. Ehret MJ, Chamberlin KW (2015) Current practices in the treatment of Alzheimer disease: where is the evidence after the phase III trials? Clin Ther 37:1604–1616

    Article  CAS  PubMed  Google Scholar 

  4. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463–466

    Article  PubMed  PubMed Central  Google Scholar 

  5. Blennow K, Zetterberg H (2015) The past and the future of Alzheimer’s disease CSF biomarkers-a journey toward validated biochemical tests covering the whole spectrum of molecular events. Front Neurosci 9:345

    Article  PubMed  PubMed Central  Google Scholar 

  6. Adlard PA, Tran BA, Finkelstein DI et al (2014) A review of β-amyloid neuroimaging in Alzheimer’s disease. Front Neurosci 8:327

    Article  PubMed  PubMed Central  Google Scholar 

  7. Okamura N, Harada R, Furumoto S, Arai H, Yanai K, Kudo Y (2014) Tau PET imaging in Alzheimer’s disease. Curr Neurol Neurosci Rep 14:500

    Article  PubMed  CAS  Google Scholar 

  8. Besson JAO, Corrigan FM, Foreman EI, Eastwood LM, Smith FW, Ashcroft GW (1984) Proton NMR observations in dementia. Magn Reson Med 1:106–107

    Google Scholar 

  9. Brun A, Englund E (1986) Brain changes in dementia of Alzheimer’s type relevant to new imaging diagnostic methods. Prog Neuro-Psychopharmacol Biol Psychiatry 10:297–308

    Article  CAS  Google Scholar 

  10. George AE, de Leon MJ, Stylopoulos LA et al (1990) CT diagnostic features of Alzheimer disease: importance of the choroidal/hippocampal fissure complex. Am J Neuroradiol 11:101–107

    CAS  PubMed  Google Scholar 

  11. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168–1170

    Article  CAS  PubMed  Google Scholar 

  12. Jernigan TL, Salmon DP, Butters N, Hesselink JR (1991) Cerebral structure on MRI, part II: specific changes in Alzheimer’s and Huntington’s diseases. Biol Psychiatry 29:68–81

    Article  CAS  PubMed  Google Scholar 

  13. Alzheimer’s Society UK. Dementia Infographic (2013). https://www.alzheimers.org.uk/site/scripts/download_info.php?fileID=1409

  14. Tuokkola T, Koikkalainen J, Parkkola R, Karrasch M, Lötjönen J, Rinne JO (2016) Visual rating method and tensor-based morphometry in the diagnosis of mild cognitive impairment and Alzheimer’s disease: a comparative magnetic resonance imaging study. Acta Radiol 57:348–355

    Article  PubMed  Google Scholar 

  15. Pasquier F, Leys D, Weerts JG, Mounier-Vehier F, Barkhof F, Scheltens P (1996) Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts. Eur Neurol 36:268–272

    Article  CAS  PubMed  Google Scholar 

  16. Juottonen K, Laakso MP, Partanen K, Soininen H (1999) Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease. Am J Neuroradiol 20:139–144

    CAS  PubMed  Google Scholar 

  17. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

    Article  PubMed  Google Scholar 

  18. Tanabe JL, Amend D, Schuff N et al (1997) Tissue segmentation of the brain in Alzheimer disease. Am J Neuroradiol 18:115–123

    CAS  PubMed  Google Scholar 

  19. Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV (2011) Neurostructural predictors of Alzheimer’s disease: a meta-analysis of VBM studies. Neurobiol Aging 32:1733–1741

    Article  PubMed  Google Scholar 

  20. Yoon B, Shim YS, Hong YJ et al (2011) Comparison of diffusion tensor imaging and voxel-based morphometry to detect white matter damage in Alzheimer’s disease. J Neurol Sci 302:89–95

    Article  PubMed  Google Scholar 

  21. Busatto GF, Diniz BS, Zanetti MV (2008) Voxel-based morphometry in Alzheimer’s disease. Expert Rev Neurother 8:1691–1702

    Article  PubMed  Google Scholar 

  22. Li C, Wang J, Gui L, Zheng J, Liu C, Du H (2011) Alterations of whole-brain cortical area and thickness in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 27:281–290

    PubMed  Google Scholar 

  23. Arbabshirani MR, Plis S, Sui J, Calhoun VD (2017) Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. NeuroImage 145:137–165

    Article  PubMed  Google Scholar 

  24. Kim CM, Hwang J, Lee JM et al (2015) Amyloid beta-weighted cortical thickness: a new imaging biomarker in Alzheimer’s disease. Curr Alzheimer Res 12:563–571

    Article  CAS  PubMed  Google Scholar 

  25. Montembeault M, Rouleau I, Provost JS, Brambati SM, Alzheimer’s Disease Neuroimaging Initiative (2016) Altered gray matter structural covariance networks in early stages of Alzheimer’s disease. Cereb Cortex 26:2650–2662

    Article  PubMed  Google Scholar 

  26. Cardoso MJ, Leung K, Modat M et al (2013) STEPS: similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation. Med Image Anal 17:671–684

    Article  Google Scholar 

  27. Ben Ahmed O, Mizotin M, Benois-Pineau J et al (2015) Alzheimer’s disease diagnosis on structural MR images using circular harmonic functions descriptors on hippocampus and posterior cingulate cortex. Comput Med Imaging Graph 44:13–25

    Article  PubMed  Google Scholar 

  28. Miller MI, Younes L, Ratnanather JT et al (2015) Amygdalar atrophy in symptomatic Alzheimer’s disease based on diffeomorphometry: the BIOCARD cohort. Neurobiol Aging 36:S3–S10

    Article  PubMed  Google Scholar 

  29. Zhang Y, Dong Z, Phillips P et al (2015) Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front Comput Neurosci 9:66

    PubMed  PubMed Central  Google Scholar 

  30. Wisse LE, Biessels GJ, Heringa SM et al (2014) Hippocampal subfield volumes at 7T in early Alzheimer’s disease and normal aging. Neurobiol Aging 35:2039–2045

    Article  PubMed  Google Scholar 

  31. Joshi A, Ringman JM, Lee AS, Juarez KO, Mendez MF (2012) Comparison of clinical characteristics between familial and non-familial early onset Alzheimer’s disease. J Neurol 259:2182–2188

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tellechea P, Pujol N, Esteve-Belloch P et al (2015) Early- and late-onset Alzheimer disease: are they the same entity? [Article in English, Spanish] Neurologia. pii: S0213-4853(15)00210-8. doi: https://doi.org/10.1016/j.nrl.2015.08.002

  33. Karantzoulis S, Galvin JE (2011) Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Rev Neurother 11:1579–1591

    Article  PubMed  PubMed Central  Google Scholar 

  34. Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW (2011) Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 10:785–796

    Article  PubMed  PubMed Central  Google Scholar 

  35. La Joie R, Perrotin A, Barré L et al (2012) Region-specific hierarchy between atrophy, hypometabolism, and β-amyloid (Aβ) load in Alzheimer’s disease dementia. J Neurosci 32:16265–16273

    Article  PubMed  CAS  Google Scholar 

  36. Putcha D, Brickhouse M, O’Keefe K et al (2011) Hippocampal hyperactivation associated with cortical thinning in Alzheimer’s disease signature regions in non-demented elderly adults. J Neurosci 31:17680–17688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sperling RA, Dickerson BC, Pihlajamaki M et al (2010) Functional alterations in memory networks in early Alzheimer’s disease. NeuroMolecular Med 12:27–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tahmasian M, Pasquini L, Scherr M et al (2015) The lower hippocampus global connectivity, the higher its local metabolism in Alzheimer disease. Neurology 84:1956–1963

    Article  CAS  PubMed  Google Scholar 

  39. McDonald CR, McEvoy LK, Gharapetian L et al (2009) Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology 73:457–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Im K, Lee JM, Seo SW et al (2008) Variations in cortical thickness with dementia severity in Alzheimer’s disease. Neurosci Lett 436:227–231

    Article  CAS  PubMed  Google Scholar 

  41. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 101:4637–4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sperling RA, Laviolette PS, O’Keefe K et al (2009) Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63:178–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gispert JD, Rami L, Sánchez-Benavides G et al (2015) Nonlinear cerebral atrophy patterns across the Alzheimer’s disease continuum: impact of APOE4 genotype. Neurobiol Aging 36:2687–2701

    Article  CAS  PubMed  Google Scholar 

  44. Dubois B, Feldman HH, Jacova C et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13(6):614–629

    Article  PubMed  Google Scholar 

  45. McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269

    Article  PubMed  PubMed Central  Google Scholar 

  46. Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279

    Article  PubMed  PubMed Central  Google Scholar 

  47. Peters R (2006) Ageing and the brain. Postgrad Med J 82:84–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stark AK, Toft MH, Pakkenberg H et al (2007) The effect of age and gender on the volume and size distribution of neocortical neurons. Neuroscience 150:121–130

    Article  CAS  PubMed  Google Scholar 

  49. Jacobs B, Schall M, Prather M et al (2001) Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. Cereb Cortex 11:558–571

    Article  CAS  PubMed  Google Scholar 

  50. Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13:240–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wignall EL, Dickson JM, Vaughan P et al (2004) Smaller hippocampal volume in patients with recent-onset posttraumatic stress disorder. Biol Psychiatry 56:832–836

    Article  PubMed  Google Scholar 

  52. Labate A, Cerasa A, Gambardella A, Aguglia U, Quattrone A (2008) Hippocampal and thalamic atrophy in mild temporal lobe epilepsy: a VBM study. Neurology 71:1094–1101

    Article  CAS  PubMed  Google Scholar 

  53. Bell-McGinty S, Butters MA, Meltzer CC, Greer PJ, Reynolds CF 3rd, Becker JT (2002) Brain morphometric abnormalities in geriatric depression: long-term neurobiological effects of illness duration. Am J Psychiatry 159:1424–1427

    Article  PubMed  Google Scholar 

  54. Moulton CD, Costafreda SG, Horton P, Ismail K, CH F (2015) Meta-analyses of structural regional cerebral effects in type 1 and type 2 diabetes. Brain Imaging Behav 9:651–662

    Article  PubMed  Google Scholar 

  55. Tarroun A, Bonnefoy M, Bouffard-Vercelli J, Gedeon C, Vallee B, Cotton F (2007) Could linear MRI measurements of hippocampus differentiate normal brain aging in elderly persons from Alzheimer disease? Surg Radiol Anat 29:77–81

    Article  PubMed  Google Scholar 

  56. Walhovd KB, Westlye LT, Amlien I et al (2011) Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiol Aging 32:916–932

    Article  PubMed  Google Scholar 

  57. Fjell AM, Westlye LT, Grydeland H et al (2014) Accelerating cortical thinning: unique to dementia or universal in aging? Cereb Cortex 24:919–934

    Article  PubMed  Google Scholar 

  58. Wang L, Benzinger TL, Hassenstab J et al (2015) Spatially distinct atrophy is linked to β-amyloid and tau in preclinical Alzheimer disease. Neurology 84:1254–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Araque Caballero MÁ, Brendel M, Delker A et al (2015) Alzheimer’s disease neuroimaging initative (ADNI). mapping 3-year changes in gray matter and metabolism in Aβ-positive nondemented subjects. Neurobiol Aging 36:2913–2924

    Article  CAS  PubMed  Google Scholar 

  60. Whitwell JL, Tosakulwong N, Weigand SD et al (2013) Does amyloid deposition produce a specific atrophic signature in cognitively normal subjects? Neuroimage Clin 2:249–257

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rabinowicz T, Dean DE, Petetot JM, de Courten-Myers GM (1999) Gender differences in the human cerebral cortex: more neurons in males; more processes in females. J Child Neurol 14:98–107

    Article  CAS  PubMed  Google Scholar 

  62. De Marco M, Venneri A (2015) ‘O’ blood type is associated with larger grey-matter volumes in the cerebellum. Brain Res Bull 116:1–6

    Article  PubMed  Google Scholar 

  63. O’Dwyer L, Lamberton F, Matura S et al (2012) Reduced hippocampal volume in healthy young ApoE4 carriers: an MRI study. PLoS One 7:e48895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sala-Llonch R, Lladó A, Fortea J et al (2015) Evolving brain structural changes in PSEN1 mutation carriers. Neurobiol Aging 36:1261–1270

    Article  CAS  PubMed  Google Scholar 

  65. Allan CL, Zsoldos E, Filippini N et al (2015) Lifetime hypertension as a predictor of brain structure in older adults: cohort study with a 28-year follow-up. Br J Psychiatry 206:308–315

    Article  PubMed  PubMed Central  Google Scholar 

  66. Whitlow CT, Sink KM, Divers J et al (2015) Effects of type 2 diabetes on brain structure and cognitive function: African American-Diabetes Heart Study MIND. Am J Neuroradiol 36:1648–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stern Y (2009) Cognitive reserve. Neuropsychologia 47:2015–2028

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cho H, Jeon S, Kim C et al (2015) Higher education affects accelerated cortical thinning in Alzheimer’s disease: a 5-year preliminary longitudinal study. Int Psychogeriatr 27:111–120

    Article  PubMed  Google Scholar 

  69. Gaser C, Schlaug G (2003) Brain structures differ between musicians and non-musicians. J Neurosci 23:9240–9245

    CAS  PubMed  Google Scholar 

  70. Maguire EA, Spiers HJ, Good CD, Hartley T, Frackowiak RS, Burgess N (2003) Navigation expertise and the human hippocampus: a structural brain imaging analysis. Hippocampus 13:250–259

    Article  PubMed  Google Scholar 

  71. Lövdén M, Bäckman L, Lindenberger U, Schaefer S, Schmiedek F (2010) A theoretical framework for the study of adult cognitive plasticity. Psychol Bull 136:659–676

    Article  PubMed  Google Scholar 

  72. Takeuchi H, Taki Y, Hashizume H et al (2011) Effects of training of processing speed on neural systems. J Neurosci 31:12139–12148

    Article  CAS  PubMed  Google Scholar 

  73. Mesulam MM (1999) Neuroplasticity failure in Alzheimer’s disease: bridging the gap between plaques and tangles. Neuron 24:521–529

    Article  CAS  PubMed  Google Scholar 

  74. Byun MS, Kim SE, Park J et al (2015) Heterogeneity of regional brain atrophy patterns associated with distinct progression rates in Alzheimer’s disease. PLoS One 10:e0142756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Masliah E, Hansen LA (2011) Alzheimer disease: AD pathology—emerging subtypes or age-of-onset spectrum? Nat Rev Neurol 8:11–12

    Article  PubMed  Google Scholar 

  76. Ge YL, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL (2002) Age-related total gray matter changes in normal adult brain. Part I: volumetric MR imaging analysis. Am J Neuroradiol 23:1327–1333

    PubMed  Google Scholar 

  77. Hasan KM, Mwangi B, Cao B et al (2016) Entorhinal cortex thickness across the human lifespan. J Neuroimaging 26:95–102

    Article  Google Scholar 

  78. Jack CR Jr, Petersen RC, Xu YC et al (1997) Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49:786–794

    Article  PubMed  PubMed Central  Google Scholar 

  79. Risacher SL, Saykin AJ, West JD et al (2009) Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res 6:347–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Spulber G, Niskanen E, Macdonald S et al (2012) Evolution of global and local grey matter atrophy on serial MRI scans during the progression from MCI to AD. Curr Alzheimer Res 9:516–524

    Article  CAS  PubMed  Google Scholar 

  81. Venneri A, Gorgoglione G, Toraci C, Nocetti L, Panzetti P, Nichelli P (2011) Combining neuropsychological and structural neuroimaging indicators of conversion to Alzheimer’s disease in amnestic mild cognitive impairment. Curr Alzheimer Res 8:789–797

    Article  CAS  PubMed  Google Scholar 

  82. Beltrachini L, De Marco M, Taylor ZA, Lotjonen J, Frangi AF, Venneri A (2015) Integration of cognitive tests and resting state fMRI for the individual identification of mild cognitive impairment. Curr Alzheimer Res 12:592–603

    Article  CAS  PubMed  Google Scholar 

  83. Westman E, Muehlboeck JS, Simmons A (2012) Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion. NeuroImage 62:229–238

    Article  PubMed  Google Scholar 

  84. Yun HJ, Kwak K, Lee JM, Alzheimer’s Disease Neuroimaging Initiative (2015) Multimodal discrimination of Alzheimer’s disease based on regional cortical atrophy and hypometabolism. PLoS One 10:e0129250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Mattay VS, Goldberg TE, Sambataro F, Weinberger DR (2008) Neurobiology of cognitive aging: insights from imaging genetics. Biol Psychol 79:9–22

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tyler LK, Marslen-Wilson W, Stamatakis EA (2005) Dissociating neuro-cognitive component processes: voxel-based correlational methodology. Neuropsychologia 43:771–778

    Article  PubMed  Google Scholar 

  87. Grossman M, McMillan C, Moore P et al (2004) What’s in a name: voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer’s disease, frontotemporal dementia and corticobasal degeneration. Brain 127:628–649

    Article  PubMed  Google Scholar 

  88. Pennington C, Hodges JR, Hornberger M (2011) Neural correlates of episodic memory in behavioral variant frontotemporal dementia. J Alzheimers Dis 24:261–268

    PubMed  Google Scholar 

  89. Nho K, Risacher SL, Crane PK et al (2012) Voxel and surface-based topography of memory and executive deficits in mild cognitive impairment and Alzheimer’s disease. Brain Imaging Behav 6:551–567

    Article  PubMed  PubMed Central  Google Scholar 

  90. Rodríguez-Ferreiro J, Cuetos F, Monsalve A, Martínez C, Perez AJ, Venneri A (2012) Establishing the relationship between cortical atrophy and semantic deficits in Alzheimer’s disease and mild cognitive impairment patients through voxel-based morphometry. J Neuroling 25:139–149

    Article  Google Scholar 

  91. Belleville S, Clément F, Mellah S, Gilbert B, Fontaine F, Gauthier S (2011) Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain 134:1623–1634

    Article  PubMed  Google Scholar 

  92. Venneri A, McGeown WJ, Hietanen HM, Guerrini C, Ellis AW, Shanks MF (2008) The anatomical bases of semantic retrieval deficits in early Alzheimer’s disease. Neuropsychologia 46:497–510

    Article  PubMed  Google Scholar 

  93. Thomann PA, Toro P, Dos Santos V, Essig M, Schröder J (2008) Clock drawing performance and brain morphology in mild cognitive impairment and Alzheimer’s disease. Brain Cogn 67:88–93

    Article  PubMed  Google Scholar 

  94. Bruen PD, McGeown WJ, Shanks MF, Venneri A (2008) Neuroanatomical correlates of neuropsychiatric symptoms in Alzheimer’s disease. Brain 131:2455–2463

    Article  PubMed  Google Scholar 

  95. Scahill RI, Ridgway GR, Bartlett JW et al (2013) Genetic influences on atrophy patterns in familial Alzheimer’s disease: a comparison of APP and PSEN1 mutations. J Alzheimers Dis 35:199–212

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Mahley RW, Weisgraber KH, Huang Y (2006) Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci U S A 103:5644–5651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Filippini N, Rao A, Wetten S et al (2009) Anatomically-distinct genetic associations of APOE epsilon4 allele load with regional cortical atrophy in Alzheimer’s disease. NeuroImage 44:724–728

    Article  PubMed  Google Scholar 

  98. Pievani M, Galluzzi S, Thompson PM, Rasser PE, Bonetti M, Frisoni GB (2011) APOE4 is associated with greater atrophy of the hippocampal formation in Alzheimer’s disease. NeuroImage 55:909–919

    Article  CAS  PubMed  Google Scholar 

  99. Biffi A, Anderson CD, Desikan RS et al (2010) Genetic variation and neuroimaging measures in Alzheimer disease. Arch Neurol 67:677–685

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lambert JC, Ibrahim-Verbaas CA et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hibar DP, Stein JL, Kohannim O et al (2011) Voxelwise gene-wide association study (vGeneWAS): multivariate gene-based association testing in 731 elderly subjects. NeuroImage 56:1875–1891

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hibar DP, Stein JL, Jahanshad N et al (2015) Genome-wide interaction analysis reveals replicated epistatic effects on brain structure. Neurobiol Aging 36:S151–S158

    Article  CAS  PubMed  Google Scholar 

  103. Di Marco LY, Venneri A, Farkas E, Evans PC, Marzo A, Frangi AF (2015) Vascular dysfunction in the pathogenesis of Alzheimer’s disease—a review of endothelium-mediated mechanisms and ensuing vicious circles. Neurobiol Dis 82:593–606

    Article  PubMed  CAS  Google Scholar 

  104. Wang R, Fratiglioni L, Laveskog A et al (2014) Do cardiovascular risk factors explain the link between white matter hyperintensities and brain volumes in old age? A population-based study. Eur J Neurol 21:1076–1082

    Article  CAS  PubMed  Google Scholar 

  105. Steffener J, Stern Y (2012) Exploring the neural basis of cognitive reserve in aging. Biochim Biophys Acta 1822:467–473

    Article  CAS  PubMed  Google Scholar 

  106. Wang L, Harms MP, Staggs JM et al (2010) Donepezil treatment and changes in hippocampal structure in very mild Alzheimer disease. Arch Neurol 67:99–106

    Article  PubMed  PubMed Central  Google Scholar 

  107. Krishnan KR, Charles HC, Doraiswamy PM et al (2003) Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer’s disease. Am J Psychiatry 160:2003–2011

    Article  PubMed  Google Scholar 

  108. Hashimoto M, Kazui H, Matsumoto K, Nakano Y, Yasuda M, Mori E (2005) Does donepezil treatment slow the progression of hippocampal atrophy in patients with Alzheimer’s disease? Am J Psychiatry 162:676–682

    Article  PubMed  Google Scholar 

  109. Dubois B, Chupin M, Hampel H et al (2015) Donepezil decreases annual rate of hippocampal atrophy in suspected prodromal Alzheimer’s disease. Alzheimers Dement 11:1041–1049

    Article  PubMed  Google Scholar 

  110. Jack CR Jr, Petersen RC, Grundman M et al (2008) Longitudinal MRI findings from the vitamin E and donepezil treatment study for MCI. Neurobiol Aging 29:1285–1295

    Article  CAS  PubMed  Google Scholar 

  111. Schuff N, Suhy J, Goldman R et al (2011) An MRI substudy of a donepezil clinical trial in mild cognitive impairment. Neurobiol Aging 32:2318.e31–2318.e41

    Article  CAS  Google Scholar 

  112. Tanaka Y, Hanyu H, Sakurai H, Takasaki M, Abe K (2003) Atrophy of the substantia innominata on magnetic resonance imaging predicts response to donepezil treatment in Alzheimer’s disease patients. Dement Geriatr Cogn Disord 16:119–125

    Article  CAS  PubMed  Google Scholar 

  113. Kanetaka H, Hanyu H, Hirao K et al (2008) Prediction of response to donepezil in Alzheimer’s disease: combined MRI analysis of the substantia innominata and SPECT measurement of cerebral perfusion. Nucl Med Commun 29:568–573

    Article  CAS  PubMed  Google Scholar 

  114. Bottini G, Berlingeri M, Basilico S et al (2012) GOOD or BAD responder? Behavioural and neuroanatomical markers of clinical response to donepezil in dementia. Behav Neurol 25:61–72

    Article  PubMed  PubMed Central  Google Scholar 

  115. Csernansky JG, Wang L, Miller JP, Galvin JE, Morris JC (2005) Neuroanatomical predictors of response to donepezil therapy in patients with dementia. Arch Neurol 62:1718–1722

    Article  PubMed  Google Scholar 

  116. Prins ND, van der Flier WA, Knol DL et al (2014) The effect of galantamine on brain atrophy rate in subjects with mild cognitive impairment is modified by apolipoprotein E genotype: post-hoc analysis of data from a randomized controlled trial. Alzheimers Res Ther 6:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Venneri A, McGeown WJ, Shanks MF (2005) Empirical evidence of neuroprotection by dual cholinesterase inhibition in Alzheimer’s disease. Neuroreport 16:107–110

    Article  CAS  PubMed  Google Scholar 

  118. Weiner MW, Sadowsky C, Saxton J et al (2011) Magnetic resonance imaging and neuropsychological results from a trial of memantine in Alzheimer’s disease. Alzheimers Dement 7:425–435

    Article  PubMed  Google Scholar 

  119. Fox NC, Black RS, Gilman S et al (2005) AN1792(QS-21)-201 Study. Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64:1563–1572

    Article  CAS  PubMed  Google Scholar 

  120. Kile S, Au W, Parise C et al (2017) IVIG treatment of mild cognitive impairment due to Alzheimer’s disease: a randomised double-blinded exploratory study of the effect on brain atrophy, cognition and conversion to dementia. J Neurol Neurosurg Psychiatry 88(2):106–112. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  121. Ferreira D, Westman E, Eyjolfsdottir H et al (2015) Brain changes in Alzheimer’s disease patients with implanted encapsulated cells releasing nerve growth factor. J Alzheimers Dis 43:1059–1072

    CAS  PubMed  Google Scholar 

  122. De Marco M, Shanks MF, Venneri A (2014) Cognitive stimulation: the evidence base for its application in neurodegenerative disease. Curr Alzheimer Res 11:469–483

    Article  PubMed  CAS  Google Scholar 

  123. Erickson KI, Weinstein AM, Lopez OL (2012) Physical activity, brain plasticity, and Alzheimer’s disease. Arch Med Res 43:615–621

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hafkemeijer A, Möller C, Dopper EG et al (2016) Differences in structural covariance brain networks between behavioral variant frontotemporal dementia and Alzheimer’s disease. Hum Brain Mapp 37:978–988

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalena Venneri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

De Marco, M., Venneri, A. (2018). Brain Morphometry: Alzheimer’s Disease. In: Spalletta, G., Piras, F., Gili, T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7647-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7647-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7645-4

  • Online ISBN: 978-1-4939-7647-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics