Skip to main content

LC-MS Untargeted Analysis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1738))

Abstract

LC-MS untargeted analysis is a valuable tool in the field of metabolic profiling (metabonomics/metabolomics), and the applications of this technology have grown rapidly over the past decade. LC-MS offers advantages over other analytical platforms such as speed, sensitivity, relative ease of sample preparation, and large dynamic range. As with any analytical approach, there are still drawbacks and challenges to overcome, but advances are constantly being made regarding both column chemistries and instrumentation. There are numerous untargeted LC-MS approaches which can be used in this ever-growing research field; these can be optimized depending on sample type and the nature of the study or biological question. Some of the main LC-MS approaches for the untargeted analysis of biological samples will be described in detail in the following protocol.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Holmes E, Loo RL, Stamler J et al (2008) Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453(7193):396–400. https://doi.org/10.1038/nature06882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Newgard CB (2017) Metabolomics and metabolic diseases: where do we stand? Cell Metab 25(1):43–56. https://doi.org/10.1016/j.cmet.2016.09.018

    Article  CAS  PubMed  Google Scholar 

  3. Brennan L (2016) Metabolomics in nutrition research-a powerful window into nutritional metabolism. Essays Biochem 60(5):451–458

    Article  PubMed  Google Scholar 

  4. Saurina J, Sentellas S (2017) Strategies for metabolite profiling based on liquid chromatography. J Chromatogr B 1044-1045:103–111. https://doi.org/10.1016/j.jchromb.2017.01.011

    Article  CAS  Google Scholar 

  5. Haggarty J, Burgess KE (2016) Recent advances in liquid and gas chromatography methodology for extending coverage of the metabolome. Curr Opin Biotechnol 43:77–85. https://doi.org/10.1016/j.copbio.2016.09.006.

    Article  PubMed  Google Scholar 

  6. Markley JL, Brüschweiler R, Edison AS et al (2016) The future of NMR-based metabolomics. Curr Opin Biotechnol 43:34–40. https://doi.org/10.1016/j.copbio.2016.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen Y, Xu J, Zhang R, Abliz Z (2016) Methods used to increase the comprehensive coverage of urinary and plasma metabolomes by MS. Bioanalysis 8(9):981–997. https://doi.org/10.4155/bio-2015-0010

    Article  CAS  PubMed  Google Scholar 

  8. Wilson ID, Nicholson JK, Castro-Perez J et al (2005) High resolution “ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J Proteome Res 4(2):591–598

    Article  CAS  PubMed  Google Scholar 

  9. Nassar AF, Wu T, Nassar SF, Wisnewski AV (2017) UPLC-MS for metabolomics: a giant step forward in support of pharmaceutical research. Drug Discov Today 22(2):463–470. https://doi.org/10.1016/j.drudis.2016.11.020

    Article  CAS  PubMed  Google Scholar 

  10. Zhao YY, Lin RC (2014) UPLC-MS(E) application in disease biomarker discovery: the discoveries in proteomics to metabolomics. Chem Biol Interact 215:7–16. https://doi.org/10.1016/j.cbi.2014.02.014

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Sun H, Zhang A (2011) Ultra-performance liquid chromatography coupled to mass spectrometry as a sensitive and powerful technology for metabolomic studies. J Sep Sci 34(24):3451–3459. https://doi.org/10.1002/jssc.201100333

    Article  CAS  PubMed  Google Scholar 

  12. Siskos AP, Jain P, Römisch-Margl W et al (2016) Interlaboratory reproducibility of a targeted metabolomics platform for analysis of human serum and plasma. Anal Chem 89(1):656–665

    Article  PubMed  PubMed Central  Google Scholar 

  13. Michopoulos F, Whalley N, Theodoridis G et al (2014) Targeted profiling of polar intracellular metabolites using ion-pair-high performance liquid chromatography and -ultra high performance liquid chromatography coupled to tandem mass spectrometry: applications to serum, urine and tissue extracts. J Chromatogr A 1349:60–68. https://doi.org/10.1016/j.chroma.2014.05.019

    Article  CAS  PubMed  Google Scholar 

  14. Monteiro MS, Carvalho M, Bastos ML et al (2013) Metabolomics analysis for biomarker discovery: advances and challenges. Curr Med Chem 20(2):257–271

    Article  CAS  PubMed  Google Scholar 

  15. Dunn WB, Broadhurst D, Begley P et al (2011) Human serum metabolome (HUSERMET) consortium. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6(7):1060–1083. https://doi.org/10.1038/nprot.2011.335.

    Article  CAS  PubMed  Google Scholar 

  16. Gray N, Lewis MR, Plumb RS et al (2015) High-throughput microbore UPLC-MS metabolic phenotyping of urine for large-scale epidemiology studies. J Proteome Res 14(6):2714–2721. https://doi.org/10.1021/acs.jproteome.5b00203

    Article  CAS  PubMed  Google Scholar 

  17. Wilson ID (2015) Metabolic phenotyping by liquid chromatography-mass spectrometry to study human health and disease. Anal Chem 87(5):2519. https://doi.org/10.1021/acs.analchem.5b00409. No abstract available

    Article  CAS  PubMed  Google Scholar 

  18. Vorkas PA, Isaac G, Anwar MA et al (2015) Untargeted UPLC-MS profiling pipeline to expand tissue metabolome coverage: application to cardiovascular disease. Anal Chem 87(8):4184–4193. https://doi.org/10.1021/ac503775m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gika HG, Theodoridis GA, Plumb RS et al (2014) Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J Pharm Biomed Anal 87:12–25. https://doi.org/10.1016/j.jpba.2013.06.032

    Article  CAS  PubMed  Google Scholar 

  20. Spagou K, Wilson ID, Masson P et al (2011) HILIC-UPLC-MS for exploratory urinary metabolic profiling in toxicological studies. Anal Chem 83(1):382–390. https://doi.org/10.1021/ac102523q

    Article  CAS  PubMed  Google Scholar 

  21. Virgiliou C, Sampsonidis I, Gika HG et al (2015) Development and validation of a HILIC- MS/MS multi-targeted method for metabolomics applications. Electrophoresis 36:2215–2225

    Article  CAS  PubMed  Google Scholar 

  22. Want EJ, Wilson ID, Gika H et al (2010) Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc 5(6):1005–1018. https://doi.org/10.1038/nprot.2010.50

    Article  CAS  PubMed  Google Scholar 

  23. Want EJ, Coen M, Masson P et al (2010) Ultra performance liquid chromatography-mass spectrometry profiling of bile acid metabolites in biofluids: application to experimental toxicology studies. Anal Chem 82(12):5282–5289. https://doi.org/10.1021/ac1007078

    Article  CAS  PubMed  Google Scholar 

  24. Want EJ, Masson P, Michopoulos F et al (2013) Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc 8(1):17–32. https://doi.org/10.1038/nprot.2012.135.

    Article  CAS  PubMed  Google Scholar 

  25. Vorkas PA, Shalhoub J, Isaac G et al (2015) Metabolic phenotyping of atherosclerotic plaques reveals latent associations between free cholesterol and ceramide metabolism in atherogenesis. J Proteome Res 14(3):1389–1399. https://doi.org/10.1021/pr5009898

    Article  CAS  PubMed  Google Scholar 

  26. Veselkov KA, Vingara LK, Masson P et al (2011) Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery. Anal Chem 83(15):5864–5872. https://doi.org/10.1021/ac201065j

    Article  CAS  PubMed  Google Scholar 

  27. Dias DA, Jones OA, Beale DJ, (2016) Current and future perspectives on the structural identification of small molecules in biological systems. Metabolites. 6(4). pii: E46.

    Article  PubMed Central  Google Scholar 

  28. Bocker S (2016) Searching molecular structure databases using tandem MS data: are we there yet? Curr Opin Chem Biol 36:1–6. https://doi.org/10.1016/j.cbpa.2016.12.010.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. Want .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Want, E.J. (2018). LC-MS Untargeted Analysis. In: Theodoridis, G., Gika, H., Wilson, I. (eds) Metabolic Profiling. Methods in Molecular Biology, vol 1738. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7643-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7643-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7642-3

  • Online ISBN: 978-1-4939-7643-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics