Advertisement

Quality Control and Validation Issues in LC-MS Metabolomics

  • Olga Begou
  • Helen G. Gika
  • Georgios A. Theodoridis
  • Ian D. Wilson
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1738)

Abstract

Global metabolic profiling (untargeted metabolomics) of different and complex biological matrices aims to implement an holistic, hypothesis-free analysis of (potentially) all the metabolites present in the analyzed sample. However, such an approach, although it has been the focus of great interest over the past few years, still faces many limitations and challenges, particularly with regard to the validation and the quality of the obtained results. The present protocol describes a quality control (QC) procedure for monitoring the precision of the analytical process involving untargeted metabolic phenotyping of urine and plasma/serum. The described/suggested methodology can be applied to different biological matrices, such as biological biofluids, cell, and tissue extracts.

Key words

Quality control Untargeted metabolomics Biological samples 

References

  1. 1.
    Nicholson JK, Lindon JC, Holmes E (1999) “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189.  https://doi.org/10.1080/004982599238047 CrossRefPubMedGoogle Scholar
  2. 2.
    Dunn WB, Wilson ID, Nicholls AW, Broadhurst D (2012) The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis 4:2249–2264.  https://doi.org/10.4155/bio.12.204 CrossRefPubMedGoogle Scholar
  3. 3.
    Griffiths WJ, Koal T, Wang Y et al (2010) Targeted metabolomics for biomarker discovery. Angew Chem Int Ed 49:5426–5445.  https://doi.org/10.1002/anie.200905579 CrossRefGoogle Scholar
  4. 4.
    Wilson I (2016) Methods and techniques for metabolic phenotyping. Bioanalysis 9:1–3.  https://doi.org/10.4155/bio-2016-4985 CrossRefGoogle Scholar
  5. 5.
    Gika HG, Wilson ID, Theodoridis GA (2014) LC–MS-based holistic metabolic profiling. Problems, limitations, advantages, and future perspectives. J Chromatogr B 966:1–6.  https://doi.org/10.1016/j.jchromb.2014.01.054 CrossRefGoogle Scholar
  6. 6.
    Gika HG, Theodoridis GA, Earll M et al (2010) Does the mass spectrometer define the marker? A comparison of global metabolite profiling data generated simultaneously via UPLC-MS on two different mass spectrometers. Anal Chem 82:8226–8234.  https://doi.org/10.1021/ac1016612 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rainville PD, Theodoridis G, Plumb RS, Wilson ID (2014) Advances in liquid chromatography coupled to mass spectrometry for metabolic phenotyping. TrAC Trends Anal Chem 61:181–191.  https://doi.org/10.1016/j.trac.2014.06.005 CrossRefGoogle Scholar
  8. 8.
    Gika HG, Theodoridis GA, Earll M, Wilson ID (2012) A QC approach to the determination of day-to-day reproducibility and robustness of LC-MS methods for global metabolite profiling in metabonomics/metabolomics. Bioanalysis 4:2239–2247.  https://doi.org/10.4155/bio.12.212 CrossRefPubMedGoogle Scholar
  9. 9.
    Begou O, Gika HG, Wilson ID et al (2017) Hyphenated MS-Based Targeted approaches in metabolomics. Analyst 142(17):3079–3100CrossRefGoogle Scholar
  10. 10.
    Theodoridis G, Gika HG, Wilson ID (2011) Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies. Mass Spectrom Rev 30:884–906.  https://doi.org/10.1002/mas.20306 CrossRefPubMedGoogle Scholar
  11. 11.
    Gika HG, Zisi C, Theodoridis G et al (2016) Protocol for quality control in metabolic profiling of biological fluids by U(H)PLC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 1008:15–25.  https://doi.org/10.1016/j.jchromb.2015.10.045 CrossRefPubMedGoogle Scholar
  12. 12.
    Gorrochategui E, Jaumot J, Lacorte S et al (2016) Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: overview and workflow. TrAC Trends Anal Chem 82:425–442.  https://doi.org/10.1016/j.trac.2016.07.004 CrossRefGoogle Scholar
  13. 13.
    Naz S, Vallejo M, García A et al (2014) Method validation strategies involved in non-targeted metabolomics. J Chromatogr A 1353:99–105.  https://doi.org/10.1016/j.chroma.2014.04.071 CrossRefPubMedGoogle Scholar
  14. 14.
    Bijlsma S, Bobeldijk I, Verheij ER et al (2006) Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem 78:567–574.  https://doi.org/10.1021/ac051495j CrossRefPubMedGoogle Scholar
  15. 15.
    Want EJ, Wilson ID, Gika H et al (2010) Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc 5:1005–1018.  https://doi.org/10.1038/nprot.2010.50 CrossRefPubMedGoogle Scholar
  16. 16.
    Gika HG, Theodoridis GA, Wingate JE et al (2007) Within-day reproducibility of an HPLC-MS-based method for metabonomic analysis: application to human urine. J Proteome Res 6:3291–3303.  https://doi.org/10.1021/pr070183p CrossRefPubMedGoogle Scholar
  17. 17.
    Zelena E, Dunn WB, Broadhurst D et al (2009) Development of a robust and repeatable UPLC−MS method for the long-term metabolomic study of human serum. Anal Chem 81:1357–1364.  https://doi.org/10.1021/ac8019366 CrossRefPubMedGoogle Scholar
  18. 18.
    Dunn WB, Broadhurst D, Begley P, Human Serum Metabolome (HUSERMET) Consortium (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6:1060–1083.  https://doi.org/10.1038/nprot.2011.335 CrossRefPubMedGoogle Scholar
  19. 19.
    Lewis MR, Pearce JTM, Spagou K et al (2016) Development and application of ultra-performance liquid chromatography-TOF MS for precision large scale urinary metabolic phenotyping. Anal Chem 88:9004–9013.  https://doi.org/10.1021/acs.analchem.6b01481 CrossRefPubMedGoogle Scholar
  20. 20.
    Veselkov KA, Vingara LK, Masson P et al (2011) Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery. Anal Chem 83:5864–5872.  https://doi.org/10.1021/ac201065j CrossRefPubMedGoogle Scholar
  21. 21.
    Michopoulos F, Theodoridis G, Smith CJ, Wilson ID (2010) Metabolite profiles from dried biofluid spots for metabonomic studies using UPLC combined with oaToF-MS. J Proteome Res 9:3328–3334.  https://doi.org/10.1021/pr100124b CrossRefPubMedGoogle Scholar
  22. 22.
    Ramautar R, Nevedomskaya E, Mayboroda OA et al (2011) Metabolic profiling of human urine by CE-MS using a positively charged capillary coating and comparison with UPLC-MS. Mol BioSyst 7:194–199.  https://doi.org/10.1039/c0mb00032a CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Olga Begou
    • 1
  • Helen G. Gika
    • 2
  • Georgios A. Theodoridis
    • 1
  • Ian D. Wilson
    • 3
  1. 1.Department of ChemistryAristotle UniversityThessalonikiGreece
  2. 2.School of MedicineAristotle UniversityThessalonikiGreece
  3. 3.Department of Surgery and CancerImperial College LondonLondonUK

Personalised recommendations