Metabolic Profiling: Status, Challenges, and Perspective

  • Helen G. Gika
  • Georgios A. Theodoridis
  • Ian D. Wilson
Part of the Methods in Molecular Biology book series (MIMB, volume 1738)


Metabolic profiling has advanced greatly in the past decade and evolved from the status of a research topic of a small number of highly specialized laboratories to the status of a major field applied by several hundreds of laboratories, numerous national centers, and core facilities. The present chapter provides our view on the status of the remaining challenges and a perspective of this fascinating research area.

Key words

Metabolomics Metabonomics Biomarker Metabolite identification MetID Biochemical pathway 


  1. 1.
    Nicholson JK, Lindon JC, Holmes E (1999) “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189CrossRefGoogle Scholar
  2. 2.
    Fiehn O, Kopka J, Dörmann P et al (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161CrossRefGoogle Scholar
  3. 3.
    Gavaghan CL, Holmes E, Lenz E et al (2000) An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett 484:169–174CrossRefGoogle Scholar
  4. 4.
    Dent CE (1952) Lectures on the scientific basis of medicine, vol 2. Athlone Press, LondonGoogle Scholar
  5. 5.
    Dalgliesh CE (1956) Two-dimensional paper chromatography of urinary indoles and related substances. Biochem J 64:481–485CrossRefGoogle Scholar
  6. 6.
    Teranishi R, Mon TR, Robinson AB et al (1972) Gas chromatography of volatiles from breath and urine. Anal Chem 44:18–20CrossRefGoogle Scholar
  7. 7.
    Pauling L, Robinson AB, Teranishi R et al (1971) Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci U S A 68:2374–2376CrossRefGoogle Scholar
  8. 8.
    Robinson AB, Pauling L (1974) Techniques of orthomolecular diagnosis. Clin Chem 20:961–965PubMedGoogle Scholar
  9. 9.
    Scott CD, Chilcote DD, Lee NE (1972) Coupled anion and cation-exchange chromatography of complex biochemical mixtures. Anal Chem 44:85–89CrossRefGoogle Scholar
  10. 10.
    Scott CD, Chilcote DD, Katz S et al (1973) Advances in the application of high resolution liquid chromatography to the separation of complex biological mixtures. J Chromatogr Sci 11:96–100CrossRefGoogle Scholar
  11. 11.
    Lenz EM, Wilson ID (2007) Analytical strategies in metabonomics J. Proteome Res 6:443–458CrossRefGoogle Scholar
  12. 12.
    Kyriakides M, Maitre L, Stamper BD et al (2016) Comparative metabonomic analysis of hepatotoxicity induced by acetaminophen and its less toxic meta-isomer. Arch Toxicol 90:3073–3085. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Han J, Danell RM, Patel JR et al (2008) Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics 4:128–140CrossRefGoogle Scholar
  14. 14.
    Theodoridis G, Gika HG, Wilson ID (2011) Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies. Mass Spectrom Rev 30:884–906. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kopka J (2006) Current challenges and developments in GC–MS based metabolite profiling technology. J Biotechnol 124:312–322CrossRefGoogle Scholar
  16. 16.
    Moros G, Chatziioannou AC, Gika HG et al (2017) Investigation of the derivatization conditions for GC–MS metabolomics of biological samples. Bioanalysis 9:53–65CrossRefGoogle Scholar
  17. 17.
    Gika HG, Theodoridis GA, Plumb RS et al (2014) Current practice of liquid chromatography–mass spectrometry in metabolomics and metabonomics. J Pharm Biomed Anal 87:12–25CrossRefGoogle Scholar
  18. 18.
    Rainville PD, Theodoridis G, Plumb RS et al (2014) Advances in liquid chromatography coupled to mass spectrometry for metabolic phenotyping. TrAC Trends Anal Chem 61:181–191. CrossRefGoogle Scholar
  19. 19.
    Theodoridis GA, Gika HG, Want EJ et al (2012) Liquid chromatography–mass spectrometry based global metabolite profiling: a review. Anal Chim Acta 711:7–16CrossRefGoogle Scholar
  20. 20.
    Gika HG, Wilson ID, Theodoridis GA (2014) LC–MS-based holistic metabolic profiling. Problems, limitations, advantages, and future perspectives. J Chromatogr B Analyt Technol Biomed Life Sci 966:1–6CrossRefGoogle Scholar
  21. 21.
    Michopoulos F, Whalley N, Theodoridis G et al (2014) Targeted profiling of polar intracellular metabolites using ion-pair-high performance liquid chromatography and-ultra high performance liquid chromatography coupled to tandem mass spectrometry: applications to serum, urine and tissue extracts. J Chromatogr A 1349:60–68CrossRefGoogle Scholar
  22. 22.
    Ramautar R, Nevedomskaya E, Mayboroda OA et al (2011) Metabolic profiling of human urine by CE-MS using a positively charged capillary coating and comparison with UPLC-MS. Mol BioSyst 7:194–199. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gika HG, Theodoridis GA, Wingate JE et al (2007) Within-day reproducibility of an HPLC−MS-based method for metabonomic analysis: application to human urine. J Proteome Res 6:3291–3303CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Xia J, Wishart DS (2010) MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26:2342–2344. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Helen G. Gika
    • 1
  • Georgios A. Theodoridis
    • 2
  • Ian D. Wilson
    • 3
  1. 1.School of MedicineAristotle UniversityThessalonikiGreece
  2. 2.Department of ChemistryAristotle UniversityThessalonikiGreece
  3. 3.Department of Surgery and CancerImperial College LondonLondonUK

Personalised recommendations