Skip to main content

Detecting Phenotypically Resistant Mycobacterium tuberculosis Using Wavelength Modulated Raman Spectroscopy

  • Protocol
  • First Online:
Antibiotic Resistance Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1736))

Abstract

Raman spectroscopy is a non-destructive and label-free technique. Wavelength modulated Raman (WMR) spectroscopy was applied to investigate Mycobacterium tuberculosis cell state, lipid rich (LR) and lipid poor (LP). Compared to LP cells, LR cells can be up to 40 times more resistant to key antibiotic regimens. Using this methodology single lipid rich (LR) from lipid poor (LP) bacteria can be differentiated with both high sensitivity and specificity. It can also be used to investigate experimentally infected frozen tissue sections where both cell types can be differentiated. This methodology could be utilized to study the phenotype of mycobacterial cells in other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gillespie SH, Crook AM, McHugh TD et al (2014) Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med 371(17):1577–1587

    Article  PubMed  PubMed Central  Google Scholar 

  2. Merle CS, Fielding K, Sow OB et al (2014) A four-month gatifloxacin-containing regimen for treating tuberculosis. N Engl J Med 371(17):1588–1598

    Article  PubMed  Google Scholar 

  3. Jindani A, Harrison TS, Nunn AJ et al (2014) High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N Engl J Med 371(17):1599–1608

    Article  PubMed  PubMed Central  Google Scholar 

  4. Phillips PP, Mendel CM, Burger DA et al (2016) Limited role of culture conversion for decision-making in individual patient care and for advancing novel regimens to confirmatory clinical trials. BMC Med 14:19

    Article  PubMed  PubMed Central  Google Scholar 

  5. Daniel J, Deb C, Dubey VS et al (2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186(15):5017–5030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garton NJ, Waddell SJ, Sherratt AL et al (2008) Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 5(4):e75

    Article  PubMed  PubMed Central  Google Scholar 

  7. Deb C, Lee CM, Dubey VS et al (2009) A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One 4(6):e6077

    Article  PubMed  PubMed Central  Google Scholar 

  8. Baek SH, Li AH, Sassetti CM (2011) Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol 9(5):e1001065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hammond RJ, Baron VO, Oravcova K et al (2015) Phenotypic resistance in mycobacteria: is it because I am old or fat that I resist you? J Antimicrob Chemother 70(10):2823–2827

    Article  CAS  PubMed  Google Scholar 

  10. Maquelin K, Kirschner C, Choo-Smith LP et al (2002) Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods 51(3):255–271

    Article  CAS  PubMed  Google Scholar 

  11. Buijtels PCAM, Willemse-Erix HFM, Petit PLC et al (2008) Rapid identification of mycobacteria by Raman spectroscopy. J Clin Microbiol 46(3):961–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pahlow S, Meisel S, Cialla-May D et al (2015) Isolation and identification of bacteria by means of Raman spectroscopy. Adv Drug Deliv Rev 89:105–120

    Article  CAS  PubMed  Google Scholar 

  13. Canetta E, Mazilu M, De Luca AC et al (2011) Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples. J Biomed Opt 16(3):037002

    Article  PubMed  Google Scholar 

  14. De Luca AC, Mazilu M, Riches A et al (2010) Online fluorescence suppression in modulated Raman spectroscopy. Anal Chem 82(2):738–745

    Article  PubMed  Google Scholar 

  15. Mazilu M, De Luca AC, Riches A et al (2010) Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy. Opt Express 18(11):11382–11395

    Article  CAS  PubMed  Google Scholar 

  16. Baron VO, Chen M, Clark SO et al (2017) Label-free optical vibrational spectroscopy to detect the metabolic state of M. tuberculosis cells at the site of disease. Sci Rep 7(1):9844

    Google Scholar 

  17. Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26 (3):303–304

    Google Scholar 

Download references

Acknowledgment

This work was supported by the PreDiCT-TB consortium [IMI Joint undertaking grant agreement number 115337, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution (www.imi.europa.eu). This work was supported by the Department of Health, UK. The views expressed in this chapter are those of the authors and not necessarily those of the Department of Health. This work was supported by the UK Engineering and Physical Sciences Research Council (Grant code EP/J01771X/1) and a European Union FAMOS project (FP7 ICT, 317744). Authors acknowledge the loan of a laser from M Squared Lasers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent O. Baron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Baron, V.O., Chen, M., Clark, S.O., Williams, A., Dholakia, K., Gillespie, S.H. (2018). Detecting Phenotypically Resistant Mycobacterium tuberculosis Using Wavelength Modulated Raman Spectroscopy. In: Gillespie, S. (eds) Antibiotic Resistance Protocols. Methods in Molecular Biology, vol 1736. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7638-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7638-6_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7636-2

  • Online ISBN: 978-1-4939-7638-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics