Skip to main content

Evaluating the Effect of Small RNAs and Associated Chaperones on Rho-Dependent Termination of Transcription In Vitro

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1737))

Abstract

Besides their well-known posttranscriptional effects on mRNA translation and decay, sRNAs and associated RNA chaperones (e.g., Hfq, CsrA) sometimes regulate gene expression at the transcriptional level. In this case, the sRNA-dependent machinery modulates the activity of the transcription termination factor Rho, a ring-shaped RNA translocase/helicase that dissociates transcription elongation complexes at specific loci of the bacterial genome. Here, we describe biochemical assays to detect Rho-dependent termination signals in genomic regions of interest and to assess the effects of sRNAs and/or associated RNA chaperones on such signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porrua O, Boudvillain M, Libri D (2016) Transcription termination: variations on common themes. Trends Genet 32:508–522

    Article  CAS  PubMed  Google Scholar 

  2. Ray-Soni A, Bellecourt MJ, Landick R (2016) Mechanisms of bacterial transcription termination: all good things must end. Annu Rev Biochem 85:319–347

    Article  CAS  PubMed  Google Scholar 

  3. Santangelo TJ, Artsimovitch I (2011) Termination and antitermination: RNA polymerase runs a stop sign. Nat Rev Microbiol 9:319–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kriner MA, Sevostyanova A, Groisman EA (2016) Learning from the leaders: gene regulation by the transcription termination factor Rho. Trends Biochem Sci 41:690–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gish K, Yanofsky C (1995) Evidence suggesting cis action by the TnaC leader peptide in regulating transcription attenuation in the tryptophanase operon of Escherichia coli. J Bacteriol 177:7245–7254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matsumoto Y, Shigesada K, Hirano M et al (1986) Autogenous regulation of the gene for transcription termination factor rho in Escherichia coli: localization and function of its attenuators. J Bacteriol 166:945–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yakhnin H, Babiarz JE, Yakhnin AV et al (2001) Expression of the Bacillus subtilis trpEDCFBA operon is influenced by translational coupling and Rho termination factor. J Bacteriol 183:5918–5926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hollands K, Proshkin S, Sklyarova S et al (2012) Riboswitch control of Rho-dependent transcription termination. Proc Natl Acad Sci U S A 109:5376–5381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takemoto N, Tanaka Y, Inui M (2015) Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum. Nucleic Acids Res 43:520–529

    Article  CAS  PubMed  Google Scholar 

  10. Sedlyarova N, Shamovsky I, Bharati BK et al (2016) sRNA-mediated control of transcription termination in E. coli. Cell 167:111–121.e113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Figueroa-Bossi N, Schwartz A, Guillemardet B et al (2014) RNA remodeling by bacterial global regulator CsrA promotes Rho-dependent transcription termination. Genes Dev 28:1239–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jorgensen MG, Thomason MK, Havelund J et al (2013) Dual function of the McaS small RNA in controlling biofilm formation. Genes Dev 27:1132–1145

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang X, Dubey AK, Suzuki K et al (2005) CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol 56:1648–1663

    Article  CAS  PubMed  Google Scholar 

  14. Bossi L, Schwartz A, Guillemardet B et al (2012) A role for Rho-dependent polarity in gene regulation by a noncoding small RNA. Genes Dev 26:1864–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang X, Ji SC, Jeon HJ et al (2015) Two-level inhibition of galK expression by spot 42: degradation of mRNA mK2 and enhanced transcription termination before the galK gene. Proc Natl Acad Sci U S A 112:7581–7586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yakhnin AV, Babitzke P (2014) NusG/Spt5: are there common functions of this ubiquitous transcription elongation factor? Curr Opin Microbiol 18:68–71

    Article  CAS  PubMed  Google Scholar 

  17. Rabhi M, Espeli O, Schwartz A et al (2011) The Sm-like RNA chaperone Hfq mediates transcription antitermination at Rho-dependent terminators. EMBO J 30:2805–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peters JM, Mooney RA, Grass JA et al (2012) Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev 26:2621–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shashni R, Qayyum MZ, Vishalini V et al (2014) Redundancy of primary RNA-binding functions of the bacterial transcription terminator Rho. Nucleic Acids Res 42:9677–9690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boudvillain M, Walmacq C, Schwartz A et al (2010) Simple enzymatic assays for the in vitro motor activity of transcription termination factor Rho from Escherichia coli. Methods Mol Biol 587:137–154

    Article  CAS  PubMed  Google Scholar 

  21. D'Heygere F, Schwartz A, Coste F et al (2015) Monitoring RNA unwinding by the transcription termination factor rho from Mycobacterium tuberculosis. Methods Mol Biol 1259:293–311

    Article  PubMed  Google Scholar 

  22. Artsimovitch I, Landick R (2000) Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc Natl Acad Sci U S A 97:7090–7095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nowatzke W, Richardson L, Richardson JP (1996) Purification of transcription termination factor Rho from Escherichia coli and Micrococcus luteus. Methods Enzymol 274:353–363

    Article  CAS  PubMed  Google Scholar 

  24. Kashlev M, Nudler E, Severinov K et al (1996) Histidine-tagged RNA polymerase of Escherichia coli and transcription in solid phase. Methods Enzymol 274:326–334

    Article  CAS  PubMed  Google Scholar 

  25. Rabhi M, Gocheva V, Jacquinot F et al (2011) Mutagenesis-based evidence for an asymmetric configuration of the ring-shaped transcription termination factor Rho. J Mol Biol 405:497–518

    Article  CAS  PubMed  Google Scholar 

  26. Rabhi M, Rahmouni AR, Boudvillain M (2010) Transcription termination factor Rho: a ring-shaped RNA helicase from bacteria. In: Jankowsky E (ed) RNA helicases, vol 19. RSC Publishing, Cambridge, pp 243–271

    Chapter  Google Scholar 

  27. Gocheva V, Le Gall A, Boudvillain M et al (2015) Direct observation of the translocation mechanism of transcription termination factor Rho. Nucleic Acids Res 43:2367–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soper T, Mandin P, Majdalani N et al (2010) Positive regulation by small RNAs and the role of Hfq. Proc Natl Acad Sci U S A 107:9602–9607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yarnell WS, Roberts JW (1999) Mechanism of intrinsic transcription termination and antitermination. Science 284:611–615

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a PhD scholarship from Région Centre Val-de-Loire to C.N. and by a grant from Agence Nationale de la Recherche (ANR-15-CE11-0024-02) and CNRS core funding to M.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Boudvillain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nadiras, C., Schwartz, A., Delaleau, M., Boudvillain, M. (2018). Evaluating the Effect of Small RNAs and Associated Chaperones on Rho-Dependent Termination of Transcription In Vitro. In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 1737. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7634-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7634-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7633-1

  • Online ISBN: 978-1-4939-7634-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics