Skip to main content

Techniques to Analyze sRNA Protein Cofactor Self-Assembly In Vitro

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1737))

Abstract

Post-transcriptional control of gene expression by small regulatory noncoding RNA (sRNA) needs protein accomplices to occur. Past research mainly focused on the RNA chaperone Hfq as cofactor. Nevertheless, recent studies indicated that other proteins might be involved in sRNA-based regulations. As some of these proteins have been shown to self-assemble, we describe in this chapter protocols to analyze the nano-assemblies formed. Precisely, we focus our analysis on Escherichia coli Hfq as a model, but the protocols presented here can be applied to analyze any polymer of proteins. This chapter thus provides a guideline to develop commonly used approaches to detect prokaryotic protein self-assembly, with a special focus on the detection of amyloidogenic polymers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

AFM:

Atomic force microscopy

CF:

Curve fitting

FTIR:

Fourier transform infrared spectroscopy

SAXS:

Small angle X-ray scattering

SRCD:

Synchrotron radiation circular dichroism

TEM:

Transmission electron microscopy

ThT:

Thioflavin T

References

  1. Taghbalout A, Yang Q, Arluison V (2014) The Escherichia coli RNA processing and degradation machinery is compartmentalized within an organized cellular network. Biochem J 458:11–22

    Article  CAS  PubMed  Google Scholar 

  2. Arluison V, Taghbalout A (2015) Cellular localization of RNA degradation and processing components in Escherichia coli. Methods Mol Biol 1259:87–101

    Article  CAS  PubMed  Google Scholar 

  3. Lavelle C, Busi F, Arluison V (2015) Multiple approaches for the investigation of bacterial small regulatory RNAs self-assembly. Methods Mol Biol 1297:21–42

    Article  PubMed  Google Scholar 

  4. Cayrol B, Geinguenaud F, Lacoste J, Busi F, Le Derout J, Pietrement O, Le Cam E, Regnier P, Lavelle C, Arluison V (2009) Auto-assembly of E. coli DsrA small noncoding RNA: molecular characteristics and functional consequences. RNA Biol 6:434–445

    Article  CAS  PubMed  Google Scholar 

  5. Busi F, Cayrol B, Lavelle C, LeDerout J, Pietrement O, Le Cam E, Geinguenaud F, Lacoste J, Regnier P, Arluison V (2009) Auto-assembly as a new regulatory mechanism of noncoding RNA. Cell Cycle 8:952–954

    Article  CAS  PubMed  Google Scholar 

  6. Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9:578–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fischer S, Benz J, Spath B, Maier LK, Straub J, Granzow M, Raabe M, Urlaub H, Hoffmann J, Brutschy B, Allers T, Soppa J, Marchfelder A (2010) The archaeal Lsm protein binds to small RNAs. J Biol Chem 285:34429–34438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smirnov A, Wang C, Drewry LL, Vogel J (2017) Molecular mechanism of mRNA repression in trans by a ProQ-dependent small RNA. EMBO J 36:1029–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fortas E, Piccirilli F, Malabirade A, Militello V, Trepout S, Marco S, Taghbalout A, Arluison V (2015) New insight into the structure and function of Hfq C-terminus. Biosci Rep 35:e00190

    Article  PubMed  PubMed Central  Google Scholar 

  10. Maury CP (2009) The emerging concept of functional amyloid. J Intern Med 265:329–334

    Article  CAS  PubMed  Google Scholar 

  11. Ostrowski A, Mehert A, Prescott A, Kiley TB, Stanley-Wall NR (2011) YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis. J Bacteriol 193:4821–4831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou Y, Blanco LP, Smith DR, Chapman MR (2012) Bacterial amyloids. Methods Mol Biol 849:303–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aguilera P, Marcoleta A, Lobos-Ruiz P, Arranz R, Valpuesta JM, Monasterio O, Lagos R (2016) Identification of key amino acid residues modulating intracellular and in vitro microcin E492 amyloid formation. Front Microbiol 7:35

    Article  PubMed  PubMed Central  Google Scholar 

  14. Refregiers M, Wien F, Ta HP, Premvardhan L, Bac S, Jamme F, Rouam V, Lagarde B, Polack F, Giorgetta JL, Ricaud JP, Bordessoule M, Giuliani A (2012) DISCO synchrotron-radiation circular-dichroism endstation at SOLEIL. J Synchrotron Radiat 19:831–835

    Article  CAS  PubMed  Google Scholar 

  15. Giuliani A, Jamme F, Rouam V, Wien F, Giorgetta JL, Lagarde B, Chubar O, Bac S, Yao I, Rey S, Herbeaux C, Marlats JL, Zerbib D, Polack F, Refregiers M (2009) DISCO: a low-energy multipurpose beamline at synchrotron SOLEIL. J Synchrotron Radiat 16:835–841

    Article  PubMed  Google Scholar 

  16. Wien F, Wallace BA (2005) Calcium fluoride micro cells for synchrotron radiation circular dichroism spectroscopy. Appl Spectrosc 59:1109–1113

    Article  CAS  PubMed  Google Scholar 

  17. Lees JG, Smith BR, Wien F, Miles AJ, Wallace BA (2004) CDtool-an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Anal Biochem 332:285–289

    Article  CAS  PubMed  Google Scholar 

  18. Micsonai A, Wien F, Kernya L, Lee YH, Goto Y, Refregiers M, Kardos J (2015) Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc Natl Acad Sci U S A 112:E3095–E3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reinke AA, Gestwicki JE (2011) Insight into amyloid structure using chemical probes. Chem Biol Drug Des 77:399–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rhiannon GC, Christopher TG, Nicolas HV (2012) Characterization of fiber-forming peptides and proteins by means of atomic force microscopy. Curr Protein Pept Sci 13:232–257

    Article  Google Scholar 

  21. Dufrene YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Muller DJ (2017) Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat Nanotechnol 12:295–307

    Article  CAS  PubMed  Google Scholar 

  22. Liberelle B, Banquy X, Giasson S (2008) Stability of silanols and grafted alkylsilane monolayers on plasma-activated mica surfaces. Langmuir 24:3280–3288

    Article  CAS  PubMed  Google Scholar 

  23. Thompson RF, Walker M, Siebert CA, Muench SP, Ranson NA (2016) An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 100:3–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Militello V, Casarino C, Emanuele A, Giostra A, Pullara F, Leone M (2004) Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophys Chem 107:175–187

    Article  CAS  PubMed  Google Scholar 

  25. Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487

    Article  CAS  PubMed  Google Scholar 

  26. Zandomeneghi G, Krebs MR, McCammon MG, Fandrich M (2004) FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Protein Sci 13:3314–3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wallace BA (2009) Protein characterisation by synchrotron radiation circular dichroism spectroscopy. Q Rev Biophys 42:317–370

    Article  CAS  PubMed  Google Scholar 

  28. Kardos J, Micsonai A, Pal-Gabor H, Petrik E, Graf L, Kovacs J, Lee YH, Naiki H, Goto Y (2011) Reversible heat-induced dissociation of beta2-microglobulin amyloid fibrils. Biochemistry 50:3211–3220

    Article  CAS  PubMed  Google Scholar 

  29. Guinier A (1955) Small-angle scattering of x-rays, Structure of matter series. Wiley, New York

    Google Scholar 

  30. Feigin LAS, Svergun DI, Taylor GW (1987) Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, NY, USA

    Book  Google Scholar 

  31. Feigin O, Kratky O (1982) Small angle x-ray scattering. Academic Press, New York/London

    Google Scholar 

  32. Guinier A (1994) X-ray diffraction: in crystals, imperfect crystals, and amorphous bodies. Courier Corporation, North Chelmsford

    Google Scholar 

  33. Kaneko I, Tutumi S (1997) Matters arising: conformations of β-amyloid in solution. J Neurochem 68:438–439

    CAS  Google Scholar 

  34. Stains CI, Mondal K, Ghosh I (2007) Molecules that target beta-amyloid. ChemMedChem 2:1674–1692

    Article  CAS  PubMed  Google Scholar 

  35. Herrera AI, Tomich JM, Prakash O (2016) Membrane interacting peptides: a review. Curr Protein Pept Sci 17:827–841

    Article  CAS  PubMed  Google Scholar 

  36. Malabirade A, Morgado-Brajones J, Marquez I, Seguin J, Trepout S, Wien F, Marco S, Velez M, Arluison V (2017) Membrane association of the bacterial riboregulator Hfq and functional perspectives. Sci Rep 7(1):10724

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vetri V, D’Amico M, Fodera V, Leone M, Ponzoni A, Sberveglieri G, Militello V (2011) Bovine Serum Albumin protofibril-like aggregates formation: solo but not simple mechanism. Arch Biochem Biophys 508:13–24

    Article  CAS  PubMed  Google Scholar 

  38. Vetri V, Militello V (2005) Thermal induced conformational changes involved in the aggregation pathways of beta-lactoglobulin. Biophys Chem 113:83–91

    Article  CAS  PubMed  Google Scholar 

  39. Francois-Heude M, Mendez-Ardoy A, Cendret V, Lafite P, Daniellou R, Ortiz Mellet C, Garcia Fernandez JM, Moreau V, Djedaini-Pilard F (2015) Synthesis of high-mannose oligosaccharide analogues through click chemistry: true functional mimics of their natural counterparts against lectins? Chemistry 21:1978–1991

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Université Paris Diderot, CNRS, CEA, and Synchrotron SOLEIL. We gratefully acknowledge help to MV from the French Embassy for their program for scientific and university cooperation. We are indebted to F. Gobeaux (CEA Saclay, Gif-sur-Yvette, France) and A. Deniset-Besseau (LCP, Université Paris-Sud, France) for many fruitful discussions. We thank Kimberly Stanek (University of Virginia) for her careful and critical reading of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Arluison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Partouche, D. et al. (2018). Techniques to Analyze sRNA Protein Cofactor Self-Assembly In Vitro. In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 1737. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7634-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7634-8_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7633-1

  • Online ISBN: 978-1-4939-7634-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics