Skip to main content

Single-Molecule FRET Assay to Observe the Activity of Proteins Involved in RNA/RNA Annealing

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1737))

Abstract

In recent years, single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a powerful technique to study macromolecular interactions. The chief advantages of smFRET analysis compared to bulk measurements include the possibility to detect sample heterogeneities within a large population of molecules and the facility to measure kinetics without needing the synchronization of intermediate states. As such, the methodology is particularly well adapted to observe and analyze RNA/RNA and RNA/protein interactions involved in small noncoding RNA-mediated gene regulation networks. In this chapter, we describe and discuss protocols that can be used to measure the dynamics of these interactions, with a particular emphasis on the advantages—and experimental pitfalls—of using the smFRET methodology to study sRNA-based biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

smFRET:

Single-molecule Förster resonance energy transfer

sRNA:

Small noncoding RNA

References

  1. Tan YW, Hanson JA, Chu JW, Yang H (2014) Confocal single-molecule FRET for protein conformational dynamics. Methods Mol Biol 1084:51–62

    Article  CAS  PubMed  Google Scholar 

  2. Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G (2002) The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 9:11–22

    Article  PubMed  Google Scholar 

  3. Smirnov A, Wang C, Drewry LL, Vogel J (2017) Molecular mechanism of mRNA repression in trans by a ProQ-dependent small RNA. EMBO J 36:1029–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arluison V, Hohng S, Roy R, Pellegrini O, Regnier P, Ha T (2007) Spectroscopic observation of RNA chaperone activities of Hfq in post-transcriptional regulation by a small non-coding RNA. Nucleic Acids Res 35:999–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hwang W, Arluison V, Hohng S (2011) Dynamic competition of DsrA and rpoS fragments for the proximal binding site of Hfq as a means for efficient annealing. Nucleic Acids Res 39:5131–5139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bronson JE, Fei J, Hofman JM, Gonzalez RL Jr, Wiggins CH (2009) Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys J 97:3196–3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rabhi M, Espeli O, Schwartz A, Cayrol B, Rahmouni AR, Arluison V, Boudvillain M (2011) The Sm-like RNA chaperone Hfq mediates transcription antitermination at Rho-dependent terminators. EMBO J 30:2805–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hopkins JF, Panja S, Woodson SA (2011) Rapid binding and release of Hfq from ternary complexes during RNA annealing. Nucleic Acids Res 39:5193–5202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taghbalout A, Yang Q, Arluison V (2014) The Escherichia coli RNA processing and degradation machinery is compartmentalized within an organized cellular network. Biochem J 458:11–22

    Article  CAS  PubMed  Google Scholar 

  11. Hwang H, Myong S (2014) Protein induced fluorescence enhancement (PIFE) for probing protein-nucleic acid interactions. Chem Soc Rev 43:1221–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee NK, Kapanidis AN, Wang Y, Michalet X, Mukhopadhyay J, Ebright RH, Weiss S (2005) Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys J 88:2939–2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kapanidis AN, Lee NK, Laurence TA, Doose S, Margeat E, Weiss S (2004) Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci U S A 101:8936–8941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Margeat E, Kapanidis AN, Tinnefeld P, Wang Y, Mukhopadhyay J, Ebright RH, Weiss S (2006) Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes. Biophys J 90:1419–1431

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the CNRS, CEA, ESPCI, and University Paris Diderot. Ulrich Bockelmann acknowledges support by the Human Frontier Science Program [RGP008/2014]. We are particularly grateful to Emmanuel Margeat and Erwin Peterman for help with setup design and fruitful discussions, to Rahul Roy, Sungchul Hohng, and Wonseok Hwang for many fruitful discussions and to Jingyi Fei for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Bizebard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bizebard, T., Arluison, V., Bockelmann, U. (2018). Single-Molecule FRET Assay to Observe the Activity of Proteins Involved in RNA/RNA Annealing. In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 1737. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7634-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7634-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7633-1

  • Online ISBN: 978-1-4939-7634-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics