Skip to main content

Producing Hfq/Sm Proteins and sRNAs for Structural and Biophysical Studies of Ribonucleoprotein Assembly

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1737))

Abstract

Hfq is a bacterial RNA-binding protein that plays key roles in the post-transcriptional regulation of gene expression. Like other Sm proteins, Hfq assembles into toroidal discs that bind RNAs with varying affinities and degrees of sequence specificity. By simultaneously binding to a regulatory small RNA (sRNA) and an mRNA target, Hfq hexamers facilitate productive RNA∙∙∙RNA interactions; the generic nature of this chaperone-like functionality makes Hfq a hub in many sRNA-based regulatory networks. That Hfq is crucial in diverse cellular pathways—including stress response, quorum sensing, and biofilm formation—has motivated genetic and “RNAomic” studies of its function and physiology (in vivo), as well as biochemical and structural analyses of Hfq∙∙∙RNA interactions (in vitro). Indeed, crystallographic and biophysical studies first established Hfq as a member of the phylogenetically conserved Sm superfamily. Crystallography and other biophysical methodologies enable the RNA-binding properties of Hfq to be elucidated in atomic detail, but such approaches have stringent sample requirements, viz.: reconstituting and characterizing an Hfq·RNA complex requires ample quantities of well-behaved (sufficient purity, homogeneity) specimens of Hfq and RNA (sRNA, mRNA fragments, short oligoribonucleotides, or even single nucleotides). The production of such materials is covered in this chapter, with a particular focus on recombinant Hfq proteins for crystallization experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

3D:

Three-dimensional

AU:

Asymmetric unit

CV:

Column volume

DEPC:

Diethyl pyrocarbonate

HDV:

Hepatitis δ virus

HDVD:

Hanging-drop vapor diffusion

IMAC:

Immobilized metal affinity chromatography

MW:

Molecular weight

MWCO:

Molecular weight cut-off

nt:

Nucleotide

PDB:

Protein Data Bank

RNP:

Ribonucleoprotein

RT:

Room temperature

SDVD:

Sitting-drop vapor diffusion

References

  1. Franze de Fernandez MT, Eoyang L, August JT (1968) Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature 219(5154):588–590

    Article  CAS  PubMed  Google Scholar 

  2. Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9(8):578–589. https://doi.org/10.1038/nrmicro2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sauer E (2013) Structure and RNA-binding properties of the bacterial LSm protein Hfq. RNA Biol 10(4):610–618. https://doi.org/10.4161/rna.24201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Soper T, Mandin P, Majdalani N, Gottesman S, Woodson SA (2010) Positive regulation by small RNAs and the role of Hfq. Proc Natl Acad Sci 107(21):9602–9607. https://doi.org/10.1073/pnas.1004435107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Lay N, Schu DJ, Gottesman S (2013) Bacterial small RNA-based negative regulation: Hfq and its accomplices. J Biol Chem 288(12):7996–8003. https://doi.org/10.1074/jbc.R112.441386

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jousselin A, Metzinger L, Felden B (2009) On the facultative requirement of the bacterial RNA chaperone, Hfq. Trends Microbiol 17(9):399–405. https://doi.org/10.1016/j.tim.2009.06.003

    Article  CAS  PubMed  Google Scholar 

  7. Tsui HC, Leung HC, Winkler ME (1994) Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol Microbiol 13(1):35–49

    Article  CAS  PubMed  Google Scholar 

  8. Wassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S (2001) Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15(13):1637–1651. https://doi.org/10.1101/gad.901001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT, Hinton JC, Vogel J (2008) Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 4(8):e1000163. https://doi.org/10.1371/journal.pgen.1000163

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G (2002) The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 9(1):11–22

    Article  PubMed  Google Scholar 

  11. Sledjeski DD, Whitman C, Zhang A (2001) Hfq is necessary for regulation by the untranslated RNA DsrA. J Bacteriol 183(6):1997–2005. https://doi.org/10.1128/jb.183.6.1997-2005.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fantappie L, Metruccio MM, Seib KL, Oriente F, Cartocci E, Ferlicca F, Giuliani MM, Scarlato V, Delany I (2009) The RNA chaperone Hfq is involved in stress response and virulence in Neisseria meningitidis and is a pleiotropic regulator of protein expression. Infect Immun 77(5):1842–1853. https://doi.org/10.1128/iai.01216-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118(1):69–82. https://doi.org/10.1016/j.cell.2004.06.009

    Article  CAS  PubMed  Google Scholar 

  14. Mika F, Hengge R (2013) Small regulatory RNAs in the control of motility and biofilm formation in E. coli and salmonella. Int J Mol Sci 14(3):4560–4579. https://doi.org/10.3390/ijms14034560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chao Y, Vogel J (2010) The role of Hfq in bacterial pathogens. Curr Opin Microbiol 13(1):24–33. https://doi.org/10.1016/j.mib.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  16. Schumacher MA, Pearson RF, Moller T, Valentin-Hansen P, Brennan RG (2002) Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J 21(13):3546–3556. https://doi.org/10.1093/emboj/cdf322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mura C, Randolph PS, Patterson J, Cozen AE (2013) Archaeal and eukaryotic homologs of Hfq: a structural and evolutionary perspective on Sm function. RNA Biol 10(4):636–651. https://doi.org/10.4161/rna.24538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sauer E, Weichenrieder O (2011) Structural basis for RNA 3′-end recognition by Hfq. Proc Natl Acad Sci U S A 108(32):13065–13070. https://doi.org/10.1073/pnas.1103420108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Link TM, Valentin-Hansen P, Brennan RG (2009) Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc Natl Acad Sci U S A 106(46):19292–19297. https://doi.org/10.1073/pnas.0908744106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Horstmann N, Orans J, Valentin-Hansen P, Shelburne SA 3rd, Brennan RG (2012) Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A-tract. Nucleic Acids Res 40(21):11023–11035. https://doi.org/10.1093/nar/gks809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun X, Wartell RM (2006) Escherichia coli Hfq binds A18 and DsrA domain II with similar 2:1 Hfq6/RNA stoichiometry using different surface sites. Biochemistry 45(15):4875–4887. https://doi.org/10.1021/bi0523613

    Article  CAS  PubMed  Google Scholar 

  22. Panja S, Schu DJ, Woodson SA (2013) Conserved arginines on the rim of Hfq catalyze base pair formation and exchange. Nucleic Acids Res 41(15):7536–7546. https://doi.org/10.1093/nar/gkt521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stanek KA, Patterson-West J, Randolph PS, Mura C (2017) Crystal structure and RNA-binding properties of an Hfq homolog from the deep-branching Aquificae: conservation of the lateral RNA-binding mode. Acta Crystallogr D Struct Biol 73(Pt 4):294–315. https://doi.org/10.1107/s2059798317000031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schu DJ, Zhang A, Gottesman S, Storz G (2015) Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition. EMBO J 34(20):2557–2573. https://doi.org/10.15252/embj.201591569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dimastrogiovanni D, Frohlich KS, Bandyra KJ, Bruce HA, Hohensee S, Vogel J, Luisi BF (2014) Recognition of the small regulatory RNA RydC by the bacterial Hfq protein. elife 3. https://doi.org/10.7554/eLife.05375

  26. Schröder GF (2015) Hybrid methods for macromolecular structure determination: experiment with expectations. Curr Opin Struct Biol 31:20–27. https://doi.org/10.1016/j.sbi.2015.02.016

    Article  PubMed  Google Scholar 

  27. Schlundt A, Tants JN, Sattler M (2017) Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition. Methods 118-119:119–136. https://doi.org/10.1016/j.ymeth.2017.03.015

    Article  CAS  PubMed  Google Scholar 

  28. Sherwood D, Cooper JB, Press OU (2011) Crystals, X-rays and proteins: comprehensive protein crystallography. Oxford University Press, Oxford

    Google Scholar 

  29. Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ, Rance M (2010) Protein NMR spectroscopy: principles and practice. Elsevier Science, Amsterdam

    Google Scholar 

  30. Bai XC, McMullan G, Scheres SHW (2015) How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 40(1):49–57. https://doi.org/10.1016/j.tibs.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  31. Cheng Y, Grigorieff N, Penczek PA, Walz T (2015) A primer to single-particle cryo-electron microscopy. Cell 161(3):438–449. https://doi.org/10.1016/j.cell.2015.03.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A (2000) Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102(5):615–623

    Article  CAS  PubMed  Google Scholar 

  33. Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407(6802):340–348

    Article  CAS  PubMed  Google Scholar 

  34. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science (New York, NY) 289(5481):905–920

    Article  CAS  Google Scholar 

  35. Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007) Protein composition of catalytically active human telomerase from immortal cells. Science (New York, NY) 315(5820):1850–1853. https://doi.org/10.1126/science.1138596

    Article  CAS  Google Scholar 

  36. Nguyen THD, Galej WP, X-c B, Savva CG, Newman AJ, Scheres SHW, Nagai K (2015) The architecture of the spliceosomal U4/U6•U5 tri-snRNP. Nature 523(7558):47–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Agafonov DE, Kastner B, Dybkov O, Hofele RV, Liu WT, Urlaub H, Luhrmann R, Stark H (2016) Molecular architecture of the human U4/U6.U5 tri-snRNP. Science (New York, NY) 351(6280):1416–1420. https://doi.org/10.1126/science.aad2085

    Article  CAS  Google Scholar 

  38. Tangprasertchai NS, Zhang X, Ding Y, Tham K, Rohs R, Haworth IS, Qin PZ (2015) An integrated spin-labeling/computational-modeling approach for mapping global structures of nucleic acids. Methods Enzymol 564:427–453. https://doi.org/10.1016/bs.mie.2015.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  39. Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40(3):191–285. https://doi.org/10.1017/s0033583507004635

    Article  CAS  PubMed  Google Scholar 

  40. Yadav DK, Lukavsky PJ (2016) NMR solution structure determination of large RNA-protein complexes. Prog Nucl Magn Reson Spectrosc 97:57–81. https://doi.org/10.1016/j.pnmrs.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  41. Lu P, X-c B, Ma D, Xie T, Yan C, Sun L, Yang G, Zhao Y, Zhou R, Scheres SHW, Shi Y (2014) Three-dimensional structure of human γ-secretase. Nature 512(7513):166–170. https://doi.org/10.1038/nature13567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JL, Subramaniam S (2015) 2.2 A resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitor. Science (New York, NY) 348(6239):1147–1151. https://doi.org/10.1126/science.aab1576

    Article  CAS  Google Scholar 

  43. Ferre-D’Amare AR, Zhou K, Doudna JA (1998) A general module for RNA crystallization. J Mol Biol 279(3):621–631. https://doi.org/10.1006/jmbi.1998.1789

    Article  PubMed  Google Scholar 

  44. Ferre-D’Amare AR, Doudna JA (2001) Methods to crystallize RNA. Curr Protoc Nucleic Acid Chem Chapter 7:Unit 7 6. https://doi.org/10.1002/0471142700.nc0706s00

  45. Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62(Pt 1):72–82. https://doi.org/10.1107/S0907444905036693

    Article  PubMed  Google Scholar 

  46. Deigan KE, Li TW, Mathews DH, Weeks KM (2009) Accurate SHAPE-directed RNA structure determination. Proc Natl Acad Sci 106(1):97–102. https://doi.org/10.1073/pnas.0806929106

    Article  CAS  PubMed  Google Scholar 

  47. Eddy SR (2014) Computational analysis of conserved RNA secondary structure in transcriptomes and genomes. Annu Rev Biophys 43:433–456. https://doi.org/10.1146/annurev-biophys-051013-022950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ke A, Doudna JA (2004) Crystallization of RNA and RNA-protein complexes. Methods 34(3):408–414. https://doi.org/10.1016/j.ymeth.2004.03.027

    Article  CAS  PubMed  Google Scholar 

  49. Sawaya MR (2007) Characterizing a crystal from an initial native dataset. Methods Mol Biol 364:95–120. https://doi.org/10.1385/1-59745-266-1:95

    CAS  PubMed  Google Scholar 

  50. Patterson J, Mura C (2013) Rapid colorimetric assays to qualitatively distinguish RNA and DNA in biomolecular samples. J Vis Exp 72:e50225. https://doi.org/10.3791/50225

    Google Scholar 

  51. Sukhodolets MV, Garges S (2003) Interaction of Escherichia coli RNA polymerase with the ribosomal protein S1 and the Sm-like ATPase Hfq. Biochemistry 42(26):8022–8034. https://doi.org/10.1021/bi020638i

    Article  CAS  PubMed  Google Scholar 

  52. Møller T, Franch T, Højrup P, Keene DR, Bächinger HP, Brennan RG, Valentin-Hansen P (2002) Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol Cell 9(1):23–30

    Article  PubMed  Google Scholar 

  53. Nikulin A, Stolboushkina E, Perederina A, Vassilieva I, Blaesi U, Moll I, Kachalova G, Yokoyama S, Vassylyev D, Garber M, Nikonov S (2005) Structure of Pseudomonas aeruginosa Hfq protein. Acta Crystallogr D Biol Crystallogr 61(Pt 2):141–146. https://doi.org/10.1107/s0907444904030008

    Article  PubMed  Google Scholar 

  54. Kadowaki MA, Iulek J, Barbosa JA, Pedrosa Fde O, de Souza EM, Chubatsu LS, Monteiro RA, de Oliveira MA, Steffens MB (2012) Structural characterization of the RNA chaperone Hfq from the nitrogen-fixing bacterium Herbaspirillum seropedicae SmR1. Biochim Biophys Acta 1824(2):359–365. https://doi.org/10.1016/j.bbapap.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  55. Obregon KA, Hoch CT, Sukhodolets MV (2015) Sm-like protein Hfq: composition of the native complex, modifications, and interactions. Biochim Biophys Acta 1854(8):950–966. https://doi.org/10.1016/j.bbapap.2015.03.016

    Article  CAS  PubMed  Google Scholar 

  56. Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15(21):8783–8798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Price SR, Ito N, Oubridge C, Avis JM, Nagai K (1995) Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J Mol Biol 249(2):398–408

    Article  CAS  PubMed  Google Scholar 

  58. Ferre-D’Amare AR, Doudna JA (1996) Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res 24(5):977–978

    Article  PubMed  PubMed Central  Google Scholar 

  59. Beckert B, Masquida B (2011) Synthesis of RNA by in vitro transcription. In: Nielsen H (ed) RNA: methods and protocols. Humana Press, Totowa, NJ, pp 29–41. https://doi.org/10.1007/978-1-59745-248-9_3

    Chapter  Google Scholar 

  60. McPherson A, Gavira JA (2014) Introduction to protein crystallization. Acta Crystallogr Sect F Struct Biol Cryst Commun 70(Pt 1):2–20. https://doi.org/10.1107/S2053230X13033141

    Article  CAS  Google Scholar 

  61. McPherson A (1999) Crystallization of biological macromolecules. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  62. Obayashi E, Oubridge C, Krummel DP, Nagai K (2007) Crystallization of RNA-protein complexes. In: Walker JM, Doublié S (eds) Macromolecular crystallography protocols: Volume 1, Preparation and crystallization of macromolecules. Humana Press, Totowa, NJ, pp 259–276. https://doi.org/10.1007/978-1-59745-209-0_13

    Chapter  Google Scholar 

  63. Raghunathan K, Harris PT, Arvidson DN (2010) Trial by fire: are the crystals macromolecules? Acta Crystallogr Sect F Struct Biol Cryst Commun 66(Pt 5):615–620. https://doi.org/10.1107/S1744309110012078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Salt or Protein Crystal? Hampton Research. https://hamptonresearch.com/documents/growth_101/20.pdf

  65. Folichon M, Arluison V, Pellegrini O, Huntzinger E, Regnier P, Hajnsdorf E (2003) The poly(A) binding protein Hfq protects RNA from RNase E and exoribonucleolytic degradation. Nucleic Acids Res 31(24):7302–7310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mura C, Cascio D, Sawaya MR, Eisenberg DS (2001) The crystal structure of a heptameric archaeal Sm protein: implications for the eukaryotic snRNP core. Proc Natl Acad Sci U S A 98(10):5532–5537. https://doi.org/10.1073/pnas.091102298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mura C, Phillips M, Kozhukhovsky A, Eisenberg D (2003) Structure and assembly of an augmented Sm-like archaeal protein 14-mer. Proc Natl Acad Sci U S A 100(8):4539–4544. https://doi.org/10.1073/pnas.0538042100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sauter C, Basquin J, Suck D (2003) Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from Escherichia coli. Nucleic Acids Res 31(14):4091–4098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nielsen JS, Boggild A, Andersen CB, Nielsen G, Boysen A, Brodersen DE, Valentin-Hansen P (2007) An Hfq-like protein in archaea: crystal structure and functional characterization of the Sm protein from Methanococcus jannaschii. RNA 13(12):2213–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bøggild A, Overgaard M, Valentin-Hansen P, Brodersen DE (2009) Cyanobacteria contain a structural homologue of the Hfq protein with altered RNA-binding properties. FEBS J 276(14):3904–3915

    Article  PubMed  Google Scholar 

  71. Moskaleva O, Melnik B, Gabdulkhakov A, Garber M, Nikonov S, Stolboushkina E, Nikulin A (2010) The structures of mutant forms of Hfq from Pseudomonas aeruginosa reveal the importance of the conserved His57 for the protein hexamer organization. Acta Crystallogr Sect F Struct Biol Cryst Commun 66(Pt 7):760–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bonnefond L, Schellenberger P, Basquin J, Demangeat G, Ritzenthaler C, Chênevert R, Balg C, Frugier M, Rudinger-Thirion J, Giegé R, Lorber B, Sauter C (2011) Exploiting protein engineering and crystal polymorphism for successful X-ray structure determination. Cryst Growth Des 11(10):4334–4343

    Article  CAS  Google Scholar 

  73. Someya T, Baba S, Fujimoto M, Kawai G, Kumasaka T, Nakamura K (2012) Crystal structure of Hfq from Bacillus subtilis in complex with SELEX-derived RNA aptamer: insight into RNA-binding properties of bacterial Hfq. Nucleic Acids Res 40(4):1856–1867

    Article  CAS  PubMed  Google Scholar 

  74. Beich-Frandsen M, Vecerek B, Sjoblom B, Blasi U, Djinovic-Carugo K (2011) Structural analysis of full-length Hfq from Escherichia coli. Acta Crystallogr Sect F Struct Biol Cryst Commun 67(Pt 5):536–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang W, Wang L, Zou Y, Zhang J, Gong Q, Wu J, Shi Y (2011) Cooperation of Escherichia coli Hfq hexamers in DsrA binding. Genes Dev 25(19):2106–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hammerle H, Beich-Frandsen M, Vecerek B, Rajkowitsch L, Carugo O, Djinovic-Carugo K, Blasi U (2012) Structural and biochemical studies on ATP binding and hydrolysis by the Escherichia coli RNA chaperone Hfq. PLoS One 7(11):e50892

    Article  PubMed  PubMed Central  Google Scholar 

  77. Murina V, Lekontseva N, Nikulin A (2013) Hfq binds ribonucleotides in three different RNA-binding sites. Acta Crystallogr D Biol Crystallogr 69(Pt 8):1504–1513

    Article  CAS  PubMed  Google Scholar 

  78. Yonekura K, Watanabe M, Kageyama Y, Hirata K, Yamamoto M, Maki-Yonekura S (2013) Post-transcriptional regulator Hfq binds catalase HPII: crystal structure of the complex. PLoS One 8(11):e78216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang W, Wang L, Wu J, Gong Q, Shi Y (2013) Hfq-bridged ternary complex is important for translation activation of rpoS by DsrA. Nucleic Acids Res 41(11):5938–5948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Robinson KE, Orans J, Kovach AR, Link TM, Brennan RG (2014) Mapping Hfq-RNA interaction surfaces using tryptophan fluorescence quenching. Nucleic Acids Res 42(4):2736–2749

    Article  CAS  PubMed  Google Scholar 

  81. Murina VN, Melnik BS, Filimonov VV, Uhlein M, Weiss MS, Muller U, Nikulin AD (2014) Effect of conserved intersubunit amino acid substitutions on Hfq protein structure and stability. Biochemistry (Mosc) 79(5):469–477

    Article  CAS  Google Scholar 

  82. Kovach AR, Hoff KE, Canty JT, Orans J, Brennan RG (2014) Recognition of U-rich RNA by Hfq from the Gram-positive pathogen Listeria monocytogenes. RNA 20(10):1548–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schulz EC, Barabas O (2014) Structure of an Escherichia coli Hfq:RNA complex at 0.97 Å resolution. Acta Crystallogr F Struct Biol Commun 70(Pt 11):1492–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang L, Wang W, Li F, Zhang J, Wu J, Gong Q, Shi Y (2015) Structural insights into the recognition of the internal A-rich linker from OxyS sRNA by Escherichia coli Hfq. Nucleic Acids Res 43(4):2400–2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Feng SQ, Si YL, Song CY, Wang PQ, Su JY (2015) Limited proteolysis improves E. coli Hfq crystal structure resolution. Chinese J Biochem Mol Biol 31(10):1102–1108

    CAS  Google Scholar 

  86. Nikulin A, Mikhailina A, Lekontseva N, Balobanov V, Nikonova E, Tishchenko S (2017) Characterization of RNA-binding properties of the archaeal Hfq-like protein from Methanococcus jannaschii. J Biomol Struct Dyn 35(8):1615–1628

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank L. Columbus (UVa) for helpful discussions. This work was funded by NSF Career award MCB–1350957.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kimberly A. Stanek or Cameron Mura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stanek, K.A., Mura, C. (2018). Producing Hfq/Sm Proteins and sRNAs for Structural and Biophysical Studies of Ribonucleoprotein Assembly. In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 1737. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7634-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7634-8_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7633-1

  • Online ISBN: 978-1-4939-7634-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics