Skip to main content

Proteomic Studies of Psychiatric Disorders

  • Protocol
  • First Online:
Investigations of Early Nutrition Effects on Long-Term Health

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1735))

Abstract

Many diseases result from programming effects in utero. This chapter describes recent advances in proteomic studies which have improved our understanding of the underlying pathophysiological pathways in the major psychiatric disorders, resulting in the development of potential novel biomarker tests. Such tests should be based on measurement of blood-based proteins given the ease of accessibility of this medium and the known connections between the periphery and the central nervous system. Most importantly, emerging biomarker tests should be developed on lab-on-a-chip and other handheld devices to enable point-of-care use. This should help to identify individuals with psychiatric disorders much sooner than ever before, which will allow more rapid treatment options for the best possible patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.who.int/mediacentre/factsheets/fs396/en/

  2. Kassebaum NJ, Arora M, Barber RM, Bhutta ZA, Brown J, Carter A et al (2016) Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the global burden of disease study 2015. Lancet 388(10053):1603–1658

    Article  Google Scholar 

  3. http://www.who.int/nmh/publications/ncd_report_full_en.pdf

  4. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, fifth edition (DSM-5), 5th edn American Psychiatric Publishing Arlington, VA. ISBN-10: 0890425558

    Google Scholar 

  5. World Health Organization. ICD-10: the ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. World Health Organisation Geneva. ISBN-10: 9241544228

    Google Scholar 

  6. Möller HJ (2003) Bipolar disorder and schizophrenia: distinct illnesses or a continuum? J Clin Psychiatry 64(Suppl 6):23–27

    PubMed  Google Scholar 

  7. Domschke K (2013) Clinical and molecular genetics of psychotic depression. Schizophr Bull 39:766–775

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee J, Rizzo S, Altshuler L, Glahn DC, Miklowitz DJ, Sugar CA et al (2016) Deconstructing bipolar disorder and schizophrenia: a cross-diagnostic cluster analysis of cognitive phenotypes. J Affect Disord 209:71–79

    Article  PubMed  Google Scholar 

  9. Guest PC (2017) Multiplex biomarker approaches to enable point-of-care testing and personalized medicine. Methods Mol Biol 1546:311–315

    Article  CAS  PubMed  Google Scholar 

  10. Penttilä M, Jääskeläinen E, Hirvonen N, Isohanni M, Miettunen J (2014) Duration of untreated psychosis as predictor of long-term outcome in schizophrenia: systematic review and meta-analysis. Br J Psychiatry 205:88–94

    Article  PubMed  Google Scholar 

  11. Jablensky A (2000) Epidemiology of schizophrenia: the global burden of disease and disability. Eur Arch Psychiatry Clin Neurosci 250:274–285

    Article  CAS  PubMed  Google Scholar 

  12. Atkinson AJ, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, Hoth DF et al (2001) Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95

    Article  Google Scholar 

  13. Guest PC, Guest FL, Martins-de Souza D (2015) Making sense of blood-based proteomics and metabolomics in psychiatric research. Int J Neuropsychopharmacol pii:pyv138. https://doi.org/10.1093/ijnp/pyv138

    Article  Google Scholar 

  14. Guest FL, Guest PC, Martins-de-Souza D (2016) The emergence of point-of-care blood-based biomarker testing for psychiatric disorders: enabling personalized medicine. Biomark Med 10:431–443

    Article  CAS  PubMed  Google Scholar 

  15. Weissman MM, Bland RC, Canino GJ, Faravelli C, Greenwald S, Hwu HG et al (1996) Cross-national epidemiology of major depression and bipolar disorder. JAMA 276:293–299

    Article  CAS  PubMed  Google Scholar 

  16. Kessler R (2003) Epidemiology of women and depression. J Affect Disord 74:5–13

    Article  PubMed  Google Scholar 

  17. Bromet E, Andrade LH, Hwang I, Sampson NA, Alonso J, de Girolamo G et al (2011) Cross-national epidemiology of DSM-IV major depressive episode. BMC Med 9:90. https://doi.org/10.1186/1741-7015-9-90

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fuller RW, Wong DT (1985) Effects of antidepressants on uptake and receptor systems in the brain. Prog Neuro-Psychopharmacol Biol Psychiatry 9:485–490

    Article  CAS  Google Scholar 

  19. Richelson E (1990) Antidepressants and brain neurochemistry. Mayo Clin Proc 65:1227–1236

    Article  CAS  PubMed  Google Scholar 

  20. Leung A, Chue P (2000) Sex differences in schizophrenia, a review of the literature. Acta Psychiatr Scand 101:3–38

    Article  Google Scholar 

  21. van Os J, Kapur S (2009) Schizophrenia. Lancet 374:635–645

    Article  PubMed  CAS  Google Scholar 

  22. Meltzer HY (1991) The mechanism of action of novel antipsychotic drugs. Schizophr Bull 17:263–287

    Article  CAS  PubMed  Google Scholar 

  23. Kapur S, Remington G (1996) Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry 153:466–476

    Article  CAS  PubMed  Google Scholar 

  24. Cerimele JM, Chwastiak LA, Chan YF, Harrison DA, Unützer J (2013) The presentation, recognition and management of bipolar depression in primary care. J Gen Intern Med 28:1648–1656

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gelenberg AJ, Hopkins HS (1993) Report on efficacy of treatments for bipolar disorder. Psychopharmacol Bull 29:447–456

    CAS  PubMed  Google Scholar 

  26. Vieta E, Valentí M (2013) Pharmacological management of bipolar depression: acute treatment, maintenance, and prophylaxis. CNS Drugs 27:515–529

    Article  CAS  PubMed  Google Scholar 

  27. Oliveira BM, Coorssen JR, Martins-de-Souza D (2014) 2DE: the phoenix of proteomics. J Proteome 104:140–150

    Article  CAS  Google Scholar 

  28. Unlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  Google Scholar 

  29. Knowles MR, Cervino S, Skynner HA, Hunt SP, de Felipe C, Salim K et al (2003) Multiplex proteomic analysis by two-dimensional differential in-gel electrophoresis. Proteomics 3:1162–1171

    Article  CAS  PubMed  Google Scholar 

  30. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    Article  CAS  PubMed  Google Scholar 

  31. Simpson KL, Whetton AD, Dive C (2009) Quantitative mass spectrometry-based techniques for clinical use: biomarker identification and quantification. J Chromatogr B Analyt Technol Biomed Life Sci 877:1240–1249

    Article  CAS  PubMed  Google Scholar 

  32. Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR et al (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682

    Article  CAS  PubMed  Google Scholar 

  33. Yip TT, Hutchens TW (1992) Mapping and sequence-specific identification of phosphopeptides in unfractionated protein digest mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. FEBS Lett 308:149–153

    Article  CAS  PubMed  Google Scholar 

  34. Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D et al (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 25:125–131

    Article  CAS  PubMed  Google Scholar 

  35. Faça VM (2017) Selective reaction monitoring for quantitation of cellular proteins. Methods Mol Biol 1546:213–221

    Article  PubMed  CAS  Google Scholar 

  36. DeSouza L, Diehl G, Rodrigues MJ, Guo J, Romaschin AD, Colgan TJ et al (2005) Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res 4:377–386

    Article  CAS  PubMed  Google Scholar 

  37. Núñez EV, Domont GB, Nogueira FC (2017) iTRAQ-based shotgun proteomics approach for relative protein quantification. Methods Mol Biol 1546:267–274

    Article  PubMed  CAS  Google Scholar 

  38. Fulton RJ, RL MD, Smith PL, Kienker LJ, Kettman JR Jr (1997) Advanced multiplexed analysis with the FlowMetrix system. ClinChem 43:1749–1756

    CAS  Google Scholar 

  39. Stephen L (2017) Multiplex immunoassay profiling. Methods Mol Biol 1546:169–176

    Article  CAS  PubMed  Google Scholar 

  40. Salmon SE, Mackey G, Fudenberg HH (1969) “Sandwich” solid phase radioimmunoassay for the quantitative determination of human immunoglobulins. J Immunol 103:129–137

    CAS  PubMed  Google Scholar 

  41. Vignali DA (2000) Multiplexed particle-based flow cytometric assays. J Immunol Methods 243:243–255

    Article  CAS  PubMed  Google Scholar 

  42. Schumacher S, Nestler J, Otto T, Wegener M, Ehrentreich-Förster E, Michel D et al (2012) Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Lab Chip 12:464–473

    Article  CAS  PubMed  Google Scholar 

  43. Peter H, Wienke J, Bier FF (2017) Lab-on-a-chip multiplex assays. Methods Mol Biol 1546:283–294

    Article  CAS  PubMed  Google Scholar 

  44. Schumacher S, Ludecke C, Ehrentreich-Förster E, Bier FF (2013) Platform technologies for molecular diagnostics near the patient's bedside. Adv Biochem Eng Biotechnol 133:75–87

    CAS  PubMed  Google Scholar 

  45. Streit P, Nestler J, Shaporin A, Schulze R, Gessner T (2016) Thermal design of integrated heating for lab-on-a-chip systems. Proceedings of the 17th international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE), 18–20 Apr, pp 1–6

    Google Scholar 

  46. Klasnja P, Pratt W (2012) Healthcare in the pocket: mapping the space of mobile-phone health interventions. J Biomed Inform 45:184–198

    Article  PubMed  Google Scholar 

  47. Ventola CL (2014) Mobile devices and apps for health care professionals: uses and benefits. P T 39:356–364

    PubMed  PubMed Central  Google Scholar 

  48. Krishna S, Boren SA, Balas EA (2009) Healthcare via cell phones: a systematic review. Telemed J E Health 15:231–240

    Article  PubMed  Google Scholar 

  49. Liao SC, Peng J, Mauk MG, Awasthi S, Song J, Friedman H (2016) Smart cup: a minimally-instrumented, smartphone-based point-of-care molecular diagnostic device. Sens Actuators B Chem 229:232–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yeo SJ, Choi K, Cuc BT, Hong NN, Bao DT, Ngoc NM et al (2016) Smartphone-based fluorescent diagnostic system for highly pathogenic H5N1 viruses. Theranostics 6:231–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guo T, Patnaik R, Kuhlmann K, Rai AJ, Sia SK (2015) Smartphone dongle for simultaneous measurement of hemoglobin concentration and detection of HIV antibodies. Lab Chip 15:3514–3520

    Article  CAS  PubMed  Google Scholar 

  52. Barbosa AI, Gehlot P, Sidapra K, Edwards AD, Reis NM (2015) Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens Bioelectron 70:5–14

    Article  CAS  PubMed  Google Scholar 

  53. Chan MK, Tsang TM, Harris LW, Guest PC, Holmes E, Bahn S (2011) Evidence for disease and antipsychotic medication effects in post-mortem brain from schizophrenia patients. Mol Psychiatry 16:1189–1202

    Article  CAS  PubMed  Google Scholar 

  54. Martins-de-Souza D, Guest PC, Harris LW, Vanattou-Saifoudine N, Webster MJ, Rahmoune H et al (2012) Identification of proteomic signatures associated with depression and psychotic depression in post-mortem brains from major depression patients. Transl Psychiatry 2:e87. https://doi.org/10.1038/tp.2012.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barbier E, Zapata A, Oh E, Liu Q, Zhu F, Undie A et al (2007) Supersensitivity to amphetamine in protein kinase-C interacting protein/HINT1 knockout mice. Neuropsychopharmacology 32:1774–1782

    Article  CAS  PubMed  Google Scholar 

  56. Barbier E, Wang JB (2009) Anti-depressant and anxiolytic like behaviors in PKCI/HINT1 knockout mice associated with elevated plasma corticosterone level. BMC Neurosci 10:132. https://doi.org/10.1186/1471-2202-10-132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Varadarajulu J, Lebar M, Krishnamoorthy G, Habelt S, Lu J, Bernard Weinstein I et al (2011) Increased anxiety-related behaviour in Hint1 knockout mice. Behav Brain Res 220:305–311

    Article  CAS  PubMed  Google Scholar 

  58. Martins-de-Souza D, Guest PC, Vanattou-Saifoudine N, Rahmoune H, Bahn S (2012) Phosphoproteomic differences in major depressive disorder postmortem brains indicate effects on synaptic function. Eur Arch Psychiatry Clin Neurosci 262:657–666

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gottschalk M, Wesseling H, Guest PC, Bahn S (2014) Proteomic enrichment analysis of psychotic and affective disorders reveals common signatures in presynaptic glutamatergic signaling and energy metabolism. Int J Neuropsychopharmacol 18:pii: pyu019. https://doi.org/10.1093/ijnp/pyu019

    Google Scholar 

  60. Wesseling H, Gottschalk MG, Bahn S (2014) Targeted multiplexed selected reaction monitoring analysis evaluates protein expression changes of molecular risk factors for major psychiatric disorders. Int J Neuropsychopharmacol 18(1):pii: pyu015. https://doi.org/10.1093/ijnp/pyu015

    Google Scholar 

  61. Guest PC, Martins-de-Souza D, Vanattou-Saifoudine N, Harris LW, Bahn S (2011) Abnormalities in metabolism and hypothalamic-pituitary-adrenal axis function in schizophrenia. Int Rev Neurobiol 101:145–168

    Article  CAS  PubMed  Google Scholar 

  62. Krishnamurthy D, Harris LW, Levin Y, Koutroukides TA, Rahmoune H, Pietsch S et al (2012) Metabolic, hormonal and stress-related molecular changes in post-mortem pituitary glands from schizophrenia subjects. World J Biol Psychiatry 14:478–489

    Article  PubMed  Google Scholar 

  63. Stelzhammer V, Alsaif M, Chan MK, Rahmoune H, Steeb H, Guest PC et al (2015) Distinct proteomic profiles in post-mortem pituitary glands from bipolar disorder and major depressive disorder patients. J Psychiatr Res 60:40–48

    Article  PubMed  Google Scholar 

  64. Dreifuss JJ (1975) A review on neurosecretory granules: their contents and mechanisms of release. Ann N Y Acad Sci 248:184–201

    Article  CAS  PubMed  Google Scholar 

  65. Gladkevich A, Kauffman HF, Korf J (2004) Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuro-Psychopharmacol Biol Psychiatry 28:559–576

    Article  Google Scholar 

  66. Torres KCL, Souza BR, Miranda DM, Nicolato R, Neves FS, Barros AGA et al (2009) The leukocytes expressing DARPP-32 are reduced in patients with schizophrenia and bipolar disorder. Progress Neuropsychopharmacol Biol Psychiatry 33:214–219

    Article  CAS  Google Scholar 

  67. Rollins B, Martin MV, Morgan L, Vawter MP (2010) Analysis of whole genome biomarker expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 153B:919–936

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Herberth M, Koethe D, Cheng TM, Krzyszton ND, Schoeffmann S, Guest PC et al (2011) Impaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patients. Mol Psychiatry 16:848–859

    Article  CAS  PubMed  Google Scholar 

  69. Herberth M, Koethe D, Levin Y, Schwarz E, Krzyszton ND, Schoeffmann S et al (2011) Peripheral profiling analysis for bipolar disorder reveals markers associated with reduced cell survival. Proteomics 11:94–105

    Article  CAS  PubMed  Google Scholar 

  70. Wang L, Lockstone HE, Guest PC, Levin Y, Palotás A, Pietsch S et al (2010) Expression profiling of fibroblasts identifies cell cycle abnormalities in schizophrenia. J Proteome Res 9:521–527

    Article  CAS  PubMed  Google Scholar 

  71. Jarskog LF, Glantz LA, Gilmore JH, Lieberman JA (2005) Apoptotic mechanisms in the pathophysiology of schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 29:846–858

    Article  CAS  Google Scholar 

  72. Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A et al (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11:514–522

    Article  CAS  PubMed  Google Scholar 

  73. Katsel P, Davis KL, Li C, Tan W, Greenstein E, Kleiner Hoffman LB et al (2008) Abnormal indices of cell cycle activity in schizophrenia and their potential association with oligodendrocytes. Neuropsychopharmacology 33:2993–3009

    Article  CAS  PubMed  Google Scholar 

  74. Levin Y, Wang L, Schwarz E, Koethe D, Leweke FM, Bahn S (2010) Global proteomic profiling reveals altered proteomic signature in schizophrenia serum. Mol Psychiatry 15:1088–1100

    Article  CAS  PubMed  Google Scholar 

  75. Stelzhammer V, Haenisch F, Chan MK, Cooper JD, Steiner J, Steeb H et al (2014) Proteomic changes in serum of first onset, antidepressant drug-naïve major depression patients. Int J Neuropsychopharmacol 17:1599–1608

    Article  CAS  PubMed  Google Scholar 

  76. Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF et al (2000) Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry 5:142–149

    Article  CAS  PubMed  Google Scholar 

  77. Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM et al (2008) Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 13:1102–1117

    Article  CAS  PubMed  Google Scholar 

  78. English JA, Dicker P, Föcking M, Dunn MJ, Cotter DR (2009) 2-D DIGE analysis implicates cytoskeletal abnormalities in psychiatric disease. Proteomics 9:3368–3382

    Article  CAS  PubMed  Google Scholar 

  79. Schubert KO, Föcking M, Cotter DR (2015) Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology. Schizophr Res 167:64–72

    Article  PubMed  Google Scholar 

  80. Huang JT, Wang L, Prabakaran S, Wengenroth M, Lockstone HE, Koethe D et al (2008) Independent protein-profiling studies show a decrease in apolipoprotein A1 levels in schizophrenia CSF, brain and peripheral tissues. Mol Psychiatry 13:1118–1128

    Article  CAS  PubMed  Google Scholar 

  81. Kazuno AA, Ohtawa K, Otsuki K, Usui M, Sugawara H, Okazaki Y et al (2013) Proteomic analysis of lymphoblastoid cells derived from monozygotic twins discordant for bipolar disorder: a preliminary study. PLoS One 8(2):e53855. https://doi.org/10.1371/journal.pone.0053855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang TL, Sung ML, Chen TY (2014) 2D-DIGE proteome analysis on the platelet proteins of patients with major depression. Proteome Sci 12(1). https://doi.org/10.1186/1477-5956-12-1

  83. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goodwin RD, Bandiera FC, Steinberg D, Ortega AN, Feldman JM (2012) Asthma and mental health among youth: etiology, current knowledge and future directions. Expert Rev Respir Med 6:397–406

    Article  CAS  PubMed  Google Scholar 

  85. Collis I, Lloyd G (1992) Psychiatric aspects of liver disease. Br J Psychiatry 161:12–22

    Article  CAS  PubMed  Google Scholar 

  86. Makara-Studzińska M, Ksiazek P, Koślak A, Załuska W, Ksiazek A (2011) Prevalence of depressive disorders in patients with end-stage renal failure. Psychiatr Pol 45:187–195

    PubMed  Google Scholar 

  87. Duda-Sobczak A, Wierusz-Wysocka B (2011) Diabetes mellitus and psychiatric diseases. Psychiatr Pol 45:589–598

    PubMed  Google Scholar 

  88. Laborit H (1976) On the mechanism of activation of the hypothalamo-pituitary-adrenal reaction to changes in the environment (the ‘alarm reaction’). Resuscitation 5:19–30

    Article  CAS  PubMed  Google Scholar 

  89. Guest PC, Chan MK, Gottschalk MG, Bahn S (2014) The use of proteomic biomarkers for improved diagnosis and stratification of schizophrenia patients. Biomark Med 8:15–27

    Article  CAS  PubMed  Google Scholar 

  90. Reagan LP (2007) Insulin signaling effects on memory and mood. Curr Opin Pharmacol 7:633–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Grizzanti J, Lee HG, Camins A, Pallas M, Casadesus G (2016) The therapeutic potential of metabolic hormones in the treatment of age-related cognitive decline and Alzheimer disease. Nutr Res 8:pii:S0271-5317(16)30275-5. https://doi.org/10.1016/j.nutres.2016.11.002

    Google Scholar 

  92. Wong ML, Kling MA, Munson PJ, Listwak S, Licinio J, Prolo P et al (2000) Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: relation to hypercortisolism and corticotropin-releasing hormone. Proc Natl Acad Sci U S A 97:325–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kaestner F, Hettich M, Peters M, Sibrowski W, Hetzel G, Ponath G et al (2005) Different activation patterns of proinflammatory cytokines in melancholic and non-melancholic major depression are associated with HPA axis activity. J Affect Disord 87:305–311

    Article  CAS  PubMed  Google Scholar 

  94. Jokinen J, Nordstrom P (2009) HPA axis hyperactivity and attempted suicide in young adult mood disorder inpatients. J Affect Disord 116:117–120

    Article  CAS  PubMed  Google Scholar 

  95. Karlović D, Serretti A, Vrkić N, Martinac M, Marčinko D (2012) Serum concentrations of CRP, IL-6, TNF-α and cortisol in major depressive disorder with melancholic or atypical features. Psychiatry Res 198:74–80

    Article  PubMed  CAS  Google Scholar 

  96. Matsuzaka H, Maeshima H, Kida S, Kurita H, Shimano T, Nakano Y et al (2013) Gender differences in serum testosterone and cortisol in patients with major depressive disorder compared with controls. Int J Psychiatry Med 46:203–221

    Article  PubMed  Google Scholar 

  97. Okamura F, Tashiro A, Utumi A, Imai T, Suchi T, Tamura D et al (2000) Insulin resistance in patients with depression and its changes during the clinical course of depression: minimal model analysis. Metabolism 49:1255–1260

    Article  CAS  PubMed  Google Scholar 

  98. Häfner S, Baumert J, Emeny RT, Lacruz ME, Thorand B, Herder C et al (2012) Sleep disturbances and depressed mood: a harmful combination associated with increased leptin levels in women with normal weight. Biol Psychol 89:163–169

    Article  PubMed  Google Scholar 

  99. Lehto SM, Huotari A, Niskanen L, Tolmunen T, Koivumaa-Honkanen H, Honkalampi K et al (2010) Serum adiponectin and resistin levels in major depressive disorder. Acta Psychiatr Scand 121:209–215

    Article  CAS  PubMed  Google Scholar 

  100. Diniz BS, Teixeira AL, Campos AC, Miranda AS, Rocha NP, Talib LL et al (2012) Reduced serum levels of adiponectin in elderly patients with major depression. J Psychiatr Res 46:1081–1085

    Article  PubMed  Google Scholar 

  101. Olusi SO, Fido AA (1996) Serum lipid concentrations in patients with major depressive disorder. Biol Psychiatry 40:1128–1131

    Article  CAS  PubMed  Google Scholar 

  102. Sevincok L, Buyukozturk A, Dereboy F (2001) Serum lipid concentrations in patients with comorbid generalized anxiety disorder and major depressive disorder. Can J Psychiatr 46:68–71

    Article  CAS  Google Scholar 

  103. Maes M, Meltzer HY, Cosyns P, Suy E, Schotte C (1993) An evaluation of basal hypothalamic-pituitary-thyroid axis function in depression: results of a large-scaled and controlled study. Psychoneuroendocrinology 18:607–620

    Article  CAS  PubMed  Google Scholar 

  104. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C et al (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54:70–75

    Article  CAS  PubMed  Google Scholar 

  105. Karege F, Bondolfi G, Gervasoni N, Schwald M, Aubry JM, Bertschy G (2005) Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry 57:1068–1072

    Article  CAS  PubMed  Google Scholar 

  106. Deveci A, Aydemir O, Taskin O, Taneli F, Esen-Danaci A (2007) Serum brain-derived neurotrophic factor levels in conversion disorder: comparative study with depression. Psychiatry Clin Neurosci 61:571–573

    Article  CAS  PubMed  Google Scholar 

  107. Jevtović S, Karlović D, Mihaljević-Peleš A, Šerić V, Vrkić N, Jakšić N (2011) Serum brain-derived neurotrophic factor (BDNF): the severity and symptomatic dimensions of depression. Psychiatr Danub 23:363–369

    PubMed  Google Scholar 

  108. Kahl KG, Bens S, Ziegler K, Rudolf S, Kordon A, Dibbelt L et al (2009) Angiogenic factors in patients with current major depressive disorder comorbid with borderline personality disorder. Psychoneuroendocrinology 34:353–357

    Article  CAS  PubMed  Google Scholar 

  109. Firouzabadi N, Shafiei M, Bahramali E, Ebrahimi SA, Bakhshandeh H, Tajik N (2012) Association of angiotensin-converting enzyme (ACE) gene polymorphism with elevated serum ACE activity and major depression in an Iranian population. Psychiatry Res 200:336–342

    Article  CAS  PubMed  Google Scholar 

  110. Baba H, Nakano Y, Maeshima H, Satomura E, Kita Y, Suzuki T et al (2012) Metabolism of amyloid-beta protein may be affected in depression. J Clin Psychiatry 73:115–120

    Google Scholar 

  111. Maes M, Bosmans E, De Jongh R, Kenis G, Vandoolaeghe E, Neels H (1997) Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 9:853–858

    Article  CAS  PubMed  Google Scholar 

  112. Mikova O, Yakimova R, Bosmans E, Kenis G, Maes M (2001) Increased serum tumor necrosis factor alpha concentrations in major depression and multiple sclerosis. Eur Neuropsychopharmacol 11:203–208

    Article  CAS  PubMed  Google Scholar 

  113. Kim YK, Suh IB, Kim H, Han CS, Lim CS, Choi SH et al (2002) The plasma levels of interleukin-12 in schizophrenia, major depression, and bipolar mania: effects of psychotropic drugs. Mol Psychiatry 7:1107–1114

    Article  CAS  PubMed  Google Scholar 

  114. Penninx BW, Kritchevsky SB, Yaffe K, Newman AB, Simonsick EM, Rubin S et al (2003) Inflammatory markers and depressed mood in older persons: results from the Health. Aging body composition study. Biol Psychiatry 54:566–572

    Article  CAS  PubMed  Google Scholar 

  115. Simon NM, McNamara K, Chow CW, Maser RS, Papakostas GI, Pollack MH et al (2008) A detailed examination of cytokine abnormalities in major depressive disorder. Eur Neuropsychopharmacol 18:230–233

    Article  CAS  PubMed  Google Scholar 

  116. Maes M, Bosmans E, Meltzer HY (1995) Immunoendocrine aspects of major depression. Relationships between plasma interleukin-6 and soluble interleukin-2 receptor, prolactin and cortisol. Eur Arch Psychiatry Clin Neurosci 245:172–178

    Article  CAS  PubMed  Google Scholar 

  117. Kling MA, Alesci S, Csako G, Costello R, Luckenbaugh DA, Bonne O et al (2007) Sustained low-grade pro-inflammatory state in unmedicated, remitted women with major depressive disorder as evidenced by elevated serum levels of the acute phase proteins C-reactive protein and serum amyloid A. Biol Psychiatry 62:309–313

    Article  CAS  PubMed  Google Scholar 

  118. Elomaa AP, Niskanen L, Herzig KH, Viinamäki H, Hintikka J, Koivumaa-Honkanen H et al (2012) Elevated levels of serum IL-5 are associated with an increased likelihood of major depressive disorder. BMC Psychiatry 12:2. https://doi.org/10.1186/1471-244X-12-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Grassi-Oliveira R, Brieztke E, Teixeira A, Pezzi JC, Zanini M, Lopes RP et al (2012) Peripheral chemokine levels in women with recurrent major depression with suicidal ideation. Rev Bras Psiquiatr 34:71–75

    Article  PubMed  Google Scholar 

  120. Ching KH, Burbelo PD, Carlson PJ, Drevets WC, Iadarola MJ (2010) High levels of Anti-GAD65 and Anti-Ro52 autoantibodies in a patient with major depressive disorder showing psychomotor disturbance. J Neuroimmunol 222:87–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Stefanescu C, Ciobica A (2012) The relevance of oxidative stress status in first episode and recurrent depression. J Affect Disord 143:34–38

    Article  CAS  PubMed  Google Scholar 

  122. Ramsey JM, Cooper JD, Bot M, Guest PC, Lamers F, Weickert CS et al (2016) Sex differences in serum markers of major depressive disorder in the netherlands study of depression and anxiety (NESDA). PLoS One 11:e0156624. https://doi.org/10.1371/journal.pone.0156624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Papakostas GI, Shelton RC, Kinrys G, Henry ME, Bakow BR, Lipkin SH et al (2013) Assessment of a multi-assay, serum-based biological diagnostic test for major depressive disorder: a pilot and replication study. Mol Psychiatry 18:332–339

    Article  CAS  PubMed  Google Scholar 

  124. Bilello JA, Thurmond LM, Smith KM, Pi B, Rubin R, Wright SM et al (2015) MDDScore: confirmation of a blood test to aid in the diagnosis of major depressive disorder. J Clin Psychiatry 76:e199–e206

    Article  PubMed  Google Scholar 

  125. Gottschalk MG, Cooper JD, Chan MK, Bot M, Penninx BW, Bahn S (2015) Discovery of serum biomarkers predicting development of a subsequent depressive episode in social anxiety disorder. Brain Behav Immun 48:123–131

    Article  CAS  PubMed  Google Scholar 

  126. Gottschalk MG, Cooper JD, Chan MK, Bot M, Penninx BW, Bahn S (2016) Serum biomarkers predictive of depressive episodes in panic disorder. J Psychiatr Res 73:53–62

    Article  CAS  PubMed  Google Scholar 

  127. Ryan MC, Collins P, Thakore JH (2003) Impaired fasting glucose tolerance in first-episode, drug-naive patients with schizophrenia. Am J Psychiatry 160:284–489

    Article  PubMed  Google Scholar 

  128. Spelman LM, Walsh PI, Sharifi N, Collins P, Thakore JH (2007) Impaired glucose tolerance in first-episode drug-naive patients with schizophrenia. Diabet Med 24:481–445

    Article  CAS  PubMed  Google Scholar 

  129. Arranz B, Rosel P, Ramírez N, Dueñas R, Fernández P, Sanchez JM et al (2004) Insulin resistance and increased leptin concentrations in noncompliant schizophrenia patients but not in antipsychotic-naive first-episode schizophrenia patients. J Clin Psychiatry 65:1335–1342

    Article  CAS  PubMed  Google Scholar 

  130. Cohn TA, Remington G, Zipursky RB, Azad A, Connolly P, Wolever TM (2006) Insulin resistance and adiponectin levels in drug-free patients with schizophrenia: a preliminary report. Can J Psychiatr 51:382–386

    Article  Google Scholar 

  131. van Nimwegen LJ, Storosum JG, Blumer RM, Allick G, Venema HW, de Haan L et al (2008) Hepatic insulin resistance in antipsychotic naive schizophrenic patients: stable isotope studies of glucose metabolism. J Clin Endocrinol Metab 93:572–577

    Article  PubMed  CAS  Google Scholar 

  132. Wang HC, Yang YK, Chen PS, Lee IH, Yeh TL, Lu RB (2007) Increased plasma leptin in antipsychotic-naive females with schizophrenia, but not in males. Neuropsychobiology 56:213–215

    Article  CAS  PubMed  Google Scholar 

  133. Ryan MC, Sharifi N, Condren R, Thakore JH (2004) Evidence of basal pituitary-adrenal overactivity in first episode, drug naive patients with schizophrenia. Psychoneuroendocrinology 29:1065–1070

    Article  CAS  PubMed  Google Scholar 

  134. Guest PC, Schwarz E, Krishnamurthy D, Harris LW, Leweke FM, Rothermundt M et al (2011) Altered levels of circulating insulin and other neuroendocrine hormones associated with the onset of schizophrenia. Psychoneuroendocrinology 36:1092–1096

    Article  CAS  PubMed  Google Scholar 

  135. Zhang XY, Zhou DF, Cao LY, Wu GY, Shen YC (2005) Cortisol and cytokines in chronic and treatment-resistant patients with schizophrenia: association with psychopathology and response to antipsychotics. Neuropsychopharmacology 30:1532–1538

    Article  CAS  PubMed  Google Scholar 

  136. Haddad PM, Wieck A (2004) Antipsychotic-induced hyperprolactinaemia: mechanisms, clinical features and management. Drugs 64:2291–2314

    Article  CAS  PubMed  Google Scholar 

  137. Jin H, Meyer JM, Mudaliar S, Jeste DV (2008) Impact of atypical antipsychotic therapy on leptin, ghrelin, and adiponectin. Schizophr Res 100:70–85

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wirshing DA, Boyd JA, Meng LR, Ballon JS, Marder SR, Wirshing WC (2002) The effects of novel antipsychotics on glucose and lipid levels. J Clin Psychiatry 63:856–865

    Article  CAS  PubMed  Google Scholar 

  139. Huang TL, Chen JF (2005) Serum lipid profiles and schizophrenia: effects of conventional or atypical antipsychotic drugs in Taiwan. Schizophr Res 80:55–59

    Article  PubMed  Google Scholar 

  140. Schwarz E, van Beveren NJ, Ramsey J, Leweke FM, Rothermundt M, Bogerts B et al (2014) Identification of subgroups of schizophrenia patients with changes in either immune or growth factor and hormonal pathways. Schizophr Bull 40:787–795

    Article  CAS  PubMed  Google Scholar 

  141. Steiner J, Walter M, Guest P, Myint AM, Schiltz K, Panteli B et al (2010) Elevated S100B levels in schizophrenia are associated with insulin resistance. Mol Psychiatry 15:3–4

    Article  CAS  PubMed  Google Scholar 

  142. Guest PC, Wang L, Harris LW, Burling K, Levin Y, Ernst A et al (2010) Increased levels of circulating insulin-related peptides in first-onset, antipsychotic naive schizophrenia patients. Mol Psychiatry 15:118–119

    Article  CAS  PubMed  Google Scholar 

  143. Harris LW, Guest PC, Wayland MT, Umrania Y, Krishnamurthy D, Rahmoune H et al (2013) Schizophrenia: metabolic aspects of aetiology, diagnosis and future treatment strategies. Psychoneuroendocrinology 38:752–766

    Article  CAS  PubMed  Google Scholar 

  144. Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 63:801–808

    Article  CAS  PubMed  Google Scholar 

  145. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 70:663–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tourjman V, Kouassi É, Koué MÈ, Rocchetti M, Fortin-Fournier S, Fusar-Poli P et al (2013) Antipsychotics’ effects on blood levels of cytokines in schizophrenia: a meta-analysis. Schizophr Res 151:43–47

    Article  PubMed  Google Scholar 

  147. Chan MK, Guest PC, Levin Y, Umrania Y, Schwarz E, Bahn S et al (2011) Converging evidence of blood-based biomarkers for schizophrenia. Rev Neurobiol 101:95–144

    Article  CAS  Google Scholar 

  148. De Witte L, Tomasik J, Schwarz E, Guest PC, Rahmoune H, Kahn RS et al (2014) Cytokine alterations in first-episode schizophrenia patients before and after antipsychotic treatment. Schizophr Res 154:23–29

    Article  PubMed  Google Scholar 

  149. Ribeiro-Santos A, Lucio Teixeira A, Salgado JV (2014) Evidence for an immune role on cognition in schizophrenia: a systematic review. Curr Neuropharmacol 12:273–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Upthegrove R, Manzanares-Teson N, Barnes NM (2014) Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res 155:101–108

    Article  PubMed  Google Scholar 

  151. Dickerson F, Stallings C, Origoni A, Vaughan C, Khushalani S, Yang S et al (2013) C-reactive protein is elevated in schizophrenia. Schizophr Res 143:198–202

    Article  PubMed  Google Scholar 

  152. Miller BJ, Culpepper N, Rapaport MH (2014) C-Reactive protein levels in schizophrenia: a review and meta-analysis. Clin Schizophr Relat Psychoses 7:223–230

    Article  PubMed  Google Scholar 

  153. Fan X, Pristach C, Liu EY, Freudenreich O, Henderson DC, Goff DC (2007) Elevated serum levels of C-reactive protein are associated with more severe psychopathology in a subgroup of patients with schizophrenia. Psychiatry Res 149:267–271

    Article  CAS  PubMed  Google Scholar 

  154. Wong CT, Tsoi WF, Saha N (1996) Acute phase proteins in male Chinese schizophrenic patients in Singapore. Schizophr Res 22:165–171

    Article  CAS  PubMed  Google Scholar 

  155. Maes M, Delange J, Ranjan R, Meltzer HY, Desnyder R, Cooremans W (1997) Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs. Psychiatry Res 66:1–11

    Article  CAS  PubMed  Google Scholar 

  156. Domenici E, Willé DR, Tozzi F, Prokopenko I, Miller S, McKeown A et al (2010) Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections. PLoS One 5:e9166. https://doi.org/10.1371/journal.pone.0009166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Schwarz E, Izmailov R, Spain M, Barnes A, Mapes JP, Guest PC et al (2010) Validation of a blood-based laboratory test to aid in the confirmation of a diagnosis of schizophrenia. Biomark Insights 5:39–47

    Article  PubMed  PubMed Central  Google Scholar 

  158. Wehler CA, Preskorn SH (2016) High false-positive rate of a putative biomarker test to aid in the diagnosis of schizophrenia. J Clin Psychiatry 77:e451–e456

    Article  PubMed  Google Scholar 

  159. Schwarz E, Guest PC, Rahmoune H, Harris LW, Wang L, Leweke FM et al (2012) Identification of a biological signature for schizophrenia in serum. Mol Psychiatry 17:494–502

    Article  CAS  PubMed  Google Scholar 

  160. Perkins DO, Jeffries CD, Addington J, Bearden CE, Cadenhead KS, Cannon TD et al (2014) Towards a psychosis risk blood diagnostic for persons experiencing high-risk symptoms: preliminary results from the NAPLS project. Schizophr Bull 41:419–428

    Article  PubMed  PubMed Central  Google Scholar 

  161. Chan MK, Krebs MO, Cox D, Guest PC, Yolken RH, Rahmoune H et al (2015) Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset. Transl Psychiatry 5:e601. https://doi.org/10.1038/tp.2015.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Whalley LJ, Christie JE, Bennie J, Dick H, Blackburn IM, Blackwood D et al (1085) Selective increase in plasma luteinising hormone concentrations in drug free young men with mania. Br Med J (Clin Res Ed) 290:99–102

    Article  Google Scholar 

  163. Schmider J, Lammers CH, Gotthardt U, Dettling M, Holsboer F, Heuser IJ (1995) Combined dexamethasone/corticotropin-releasing hormone test in acute and remitted manic patients, in acute depression, and in normal controls: I. Biol Psychiatry 38:797–802

    Article  CAS  PubMed  Google Scholar 

  164. Rasgon NL, Kenna HA, Reynolds-May MF, Stemmle PG, Vemuri M, Marsh W et al (2010) Metabolic dysfunction in women with bipolar disorder: the potential influence of family history of type 2 diabetes mellitus. Bipolar Disord 12:504–513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Hung YJ, Hsieh CH, Chen YJ, Pei D, Kuo SW, Shen DC et al (2007) Insulin sensitivity, proinflammatory markers and adiponectin in young males with different subtypes of depressive disorder. Clin Endocrinol 67:784–789

    Article  CAS  Google Scholar 

  166. Dean B, Digney A, Sundram S, Thomas E, Scarr E (2008) Plasma apolipoprotein E is decreased in schizophrenia spectrum and bipolar disorder. Psychiatry Res 158:75–78

    Article  CAS  PubMed  Google Scholar 

  167. Sussulini A, Dihazi H, Banzato CE, Arruda MA, Stühmer W, Ehrenreich H et al (2011) Apolipoprotein A-I as a candidate serum marker for the response to lithium treatment in bipolar disorder. Proteomics 11:261–269

    Article  CAS  PubMed  Google Scholar 

  168. Fernandes BS, Gama CS, Ceresér KM, Yatham LN, Fries GR, Colpo G et al (2011) Brain-derived neurotrophic factor as a state-marker of mood episodes in bipolar disorders: a systematic review and meta-regression analysis. J Psychiatr Res 45:995–1004

    Article  PubMed  Google Scholar 

  169. Barbosa IG, Huguet RB, Neves FS, Reis HJ, Bauer ME, Janka Z et al (2011) Impaired nerve growth factor homeostasis in patients with bipolar disorder. World J Biol Psychiatry 12:228–232

    Article  PubMed  Google Scholar 

  170. Tsai S-YY, Chen KP, Yang YY, Chen CC, Lee JC, Singh VK et al (1999) Activation of indices of cell-mediated immunity in bipolar mania. Biol Psychiatry 45:989–994

    Article  CAS  PubMed  Google Scholar 

  171. Tsai S-YY, Yang YY, Kuo CJ, Chen CC, Leu SJ (2001) Effects of symptomatic severity on elevation of plasma soluble interleukin-2 receptor in bipolar mania. J Affect Disord 64:185–193

    Article  CAS  PubMed  Google Scholar 

  172. Tsai S-YY, Lee HC, Chen CC, Lee CH (2003) Plasma levels of soluble transferrin receptors and Clara cell protein (CC16) during bipolar mania and subsequent remission. J Psychiatr Res 37:229–235

    Article  PubMed  Google Scholar 

  173. Breunis MN, Kupka RW, Nolen WA, Suppes T, Denicoff KD, Leverich GS et al (2003) High numbers of circulating activated T cells and raised levels of serum IL-2 receptor in bipolar disorder. Biol Psychiatry 53:157–165

    Article  CAS  PubMed  Google Scholar 

  174. Maes M, Bosmans E, Calabrese J, Smith R, Meltzer HY (1995) Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J Psychiatr Res 29:141–152

    Article  CAS  PubMed  Google Scholar 

  175. O’Brien SM, Scully P, Scott LV, Dinan TG (2006) Cytokine profiles in bipolar affective disorder: focus on acutely ill patients. J Affect Disord 90:263–267

    Article  PubMed  CAS  Google Scholar 

  176. Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M et al (2011) Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 35:804–817

    Article  CAS  PubMed  Google Scholar 

  177. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604

    Article  CAS  PubMed  Google Scholar 

  178. Maes M, Scharpé S, Meltzer HY, Bosmans E, Suy E, Calabrese J et al (1993) Relationships between interleukin-6 activity, acute phase proteins, and function of the hypothalamic-pituitary-adrenal axis in severe depression. Psychiatry Res 49:11–27

    Article  CAS  PubMed  Google Scholar 

  179. Wadee AA, Kuschke RH, Wood LA, Berk M, Ichim L, Maes M (2002) Serological observations in patients suffering from acute manic episodes. Hum Psychopharmacol 17:175–179

    Article  PubMed  Google Scholar 

  180. Padmos RC, Hillegers MH, Knijff EM, Vonk R, Bouvy A, Staal FJ et al (2008) A discriminating messenger RNA signature for bipolar disorder formed by an aberrant expression of inflammatory genes in monocytes. Arch Gen Psychiatry 65:395–407

    Article  CAS  PubMed  Google Scholar 

  181. Rosa AR, Singh N, Whitaker E, de Brito M, Lewis AM, Vieta E et al (2014) Altered plasma glutathione levels in bipolar disorder indicates higher oxidative stress; a possible risk factor for illness onset despite normal brain-derived neurotrophic factor (BDNF) levels. Psychol Med 44:2409–2418

    Article  CAS  PubMed  Google Scholar 

  182. Andreazza AC, Cassini C, Rosa AR, Leite MC, de Almeida LM, Nardin P et al (2007) Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res 41:523–529

    Article  PubMed  Google Scholar 

  183. Machado-Vieira R, Andreazza AC, Viale CI, Zanatto V, Cereser V Jr, da Silva Vargas R et al (2007) Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett 421:33–36

    Article  CAS  PubMed  Google Scholar 

  184. Kunz M, Gama CS, Andreazza AC, Salvador M, Ceresér KM, Gomes FA et al (2008) Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 32:1677–1681

    Article  CAS  Google Scholar 

  185. Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK et al (2009) Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 136:1017–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Haenisch F, Alsaif M, Guest PC, Rahmoune H, Yolken RH, Dickerson F et al (2015) Multiplex immunoassay analysis of plasma shows differences in biomarkers related to manic or mixed mood states in bipolar disorder patients. J Affect Disord 185:12–16

    Article  CAS  PubMed  Google Scholar 

  187. Haenisch F, Cooper JD, Reif A, Kittel-Schneider S, Steiner J, Leweke FM et al (2016) Towards a blood-based diagnostic panel for bipolar disorder. Brain Behav Immun 52:49–57

    Article  PubMed  Google Scholar 

  188. Leary PE, Dobson GS, Reffner JA (2016) Development and applications of portable gas chromatography-mass spectrometry for emergency responders, the military, and law-enforcement organizations. Appl Spectrosc 70:888–896

    Article  CAS  PubMed  Google Scholar 

  189. Berg B, Cortazar B, Tseng D, Ozkan H, Feng S, Wei Q et al (2015) Cellphone-based hand-held micro-plate reader for point-of-care testing of enzyme-linked immunosorbent assays. ACS Nano 9:7857–7866

    Article  CAS  PubMed  Google Scholar 

  190. Johnson S, Cushion M, Bond S, Godbert S, Pike J (2015) Comparison of analytical sensitivity and women's interpretation of home pregnancy tests. Clin Chem Lab Med 53:391–402

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Guest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guest, P.C. (2018). Proteomic Studies of Psychiatric Disorders. In: Guest, P. (eds) Investigations of Early Nutrition Effects on Long-Term Health. Methods in Molecular Biology, vol 1735. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7614-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7614-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7613-3

  • Online ISBN: 978-1-4939-7614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics