Surface Proteome Biotinylation Combined with Bioinformatic Tools as a Strategy for Predicting Pathogen Interacting Proteins

  • Anita HorvatićEmail author
  • Josipa Kuleš
  • Nicolas Guillemin
  • Franjo Martinković
  • Iva Štimac
  • Vladimir Mrljak
  • Mangesh Bhide
Part of the Methods in Molecular Biology book series (MIMB, volume 1734)


Constant advancements in methodology and mass spectrometry instrumentation, genome sequencing and bioinformatic tools have enabled the identification of numerous pathogen proteomes. Identifying the pathogen interacting proteins by means of high-throughput techniques is key for understanding pathogen invasion and survival mechanisms and in such a way proposing specific proteins as pharmaceutical targets. Herein we describe the methodology for the enrichment and identification of pathogen surface proteome using cell surface protein biotinylation followed by LC-MS/MS and bioinformatic analyses of such data. This strategy is to be employed for the determination of protein subcellular localization and prediction of potential pathogen interacting proteins.

Key words

Biotinylation LC-MS Surface proteome Bioinformatics Subcellular localization Interacting proteins DAVID CELLO 



The authors acknowledge the European Commission for funding the VetMedZg ERA chair team (ERA Chair Initiative). We also acknowledge Croatian Science Foundation (project 3421) for supporting FM, HRZZ (project 4135) for supporting VM; and APVV-14-218, VEGA1/0258/15, and VEGA 1/0261/15 for supporting MB.


  1. 1.
    Finlay BB, McFadden G (2006) Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124:767–782CrossRefPubMedGoogle Scholar
  2. 2.
    Walters MS, Mobley HLT (2009) Identification of uropathogenic Escherichia coli surface proteins by shotgun proteomics. J Microbiol Methods 78:131–135CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Elschenbroich S, Kim Y, Medin JA et al (2010) Isolation of cell surface proteins for mass spectrometry-based proteomics. Expert Rev Proteomics 7:141–154CrossRefPubMedGoogle Scholar
  4. 4.
    Horvatic A, Kules J, Guillemin N et al (2016) High-throughput proteomics and the fight against pathogens. Mol Biosyst 12:2373–2384CrossRefPubMedGoogle Scholar
  5. 5.
    Kules J, Horvatic A, Guillemin N et al (2016) New approaches and omics tools for mining of vaccine candidates against vector-borne diseases. Mol Biosyst 12:2680–2694CrossRefPubMedGoogle Scholar
  6. 6.
    Elia G (2008) Biotinylation reagents for the study of cell surface proteins. Proteomics 8:4012–4024CrossRefPubMedGoogle Scholar
  7. 7.
    Smith SM (2011) Strategies for the purification of membrane proteins. Methods Mol Biol 681:485–496CrossRefPubMedGoogle Scholar
  8. 8.
    Lu X, Zhu H (2005) Tube-gel digestion: a novel proteomic approach for high throughput analysis of membrane proteins. Mol Cell Proteomics 4:1948–1958CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yu CS, Chen YC, CH L et al (2006) Prediction of protein subcellular localization. Proteins 64:643–651CrossRefPubMedGoogle Scholar
  10. 10.
    Gardy JL, Laird MR, Chen F et al (2005) PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21:617–623CrossRefPubMedGoogle Scholar
  11. 11.
    Wang J, Sung W-K, Krishnan A et al (2005) Protein subcellular localization prediction for Gram-negative bacteria using amino acid subalphabets and a combination of multiple support vector machines. BMC Bioinformatics 6:174–174CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRefGoogle Scholar
  13. 13.
    Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13CrossRefGoogle Scholar
  14. 14.
    Dennis G, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:R60–R60CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wisniewski JR, Zougman A, Nagaraj N et al (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362CrossRefPubMedGoogle Scholar
  16. 16.
    Shevchenko A, Tomas H, Havlis J et al (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protocols 1:2856–2860CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Anita Horvatić
    • 1
    Email author
  • Josipa Kuleš
    • 1
  • Nicolas Guillemin
    • 1
  • Franjo Martinković
    • 2
  • Iva Štimac
    • 2
  • Vladimir Mrljak
    • 1
  • Mangesh Bhide
    • 1
    • 3
    • 4
  1. 1.ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary MedicineUniversity of ZagrebZagrebCroatia
  2. 2.Department for Parasitology and Parasitic Diseases with Clinics, Faculty of Veterinary MedicineUniversity of ZagrebZagrebCroatia
  3. 3.Laboratory of Biomedical Microbiology and ImmunologyUniversity of Veterinary Medicine and PharmacyKosiceSlovakia
  4. 4.Institute of NeuroimmunologySlovakia Academy of SciencesBratislavaSlovakia

Personalised recommendations