Advertisement

Organoids as a Model to Study Infectious Disease

  • Kristen A. Engevik
  • Andrea L. Matthis
  • Marshall H. Montrose
  • Eitaro AiharaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1734)

Abstract

The advent of the gastric organoid culture system has provided a new model to emulate native epithelial tissue in vitro. Gastric organoids grow from isolated epithelial stem cells and develop into three dimensional structures that can be used to study host physiology. Here we describe current laboratory protocols for growing gastric organoids and the microinjection of pathogens such as Helicobacter pylori into the lumen of gastric organoids in order to study the cellular response following infection.

Key words

Gastric organoids Microinjection Pathogens Helicobacter pylori Fluorescent dye 

Notes

Acknowledgments

This work was supported by National Institutes of Health Grants RO1 DK102551 (MHM). This project was supported in part by PHS Grant P30 DK078392 (Live Microscopy Core at University of Cincinnati) of the Digestive Disease Research Core Center in Cincinnati.

References

  1. 1.
    Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265CrossRefPubMedGoogle Scholar
  2. 2.
    Schumacher MA, Aihara E, Feng R et al (2015) The use of murine-derived fundic organoids in studies of gastric physiology. J Physiol 593:1809–1827CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Schumacher MA, Feng R, Aihara E et al (2015) Helicobacter pylori-induced sonic hedgehog expression is regulated by NFkappaB pathway activation: the use of a novel in vitro model to study epithelial response to infection. Helicobacter 20:19–28CrossRefPubMedGoogle Scholar
  4. 4.
    Wroblewski LE, Piazuelo MB, Chaturvedi R et al (2015) Helicobacter pylori targets cancer-associated apical-junctional constituents in gastroids and gastric epithelial cells. Gut 64:720–730CrossRefPubMedGoogle Scholar
  5. 5.
    Engevik MA, Aihara E, Montrose MH et al (2013) Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth. Am J Physiol Gastrointest Liver Physiol 305:G697–G711CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Engevik MA, Yacyshyn MB, Engevik KA et al (2015) Human Clostridium difficile infection: altered mucus production and composition. Am J Physiol Gastrointest Liver Physiol 308:G510–G524CrossRefPubMedGoogle Scholar
  7. 7.
    Engevik MA, Engevik KA, Yacyshyn MB et al (2015) Human Clostridium difficile infection: inhibition of NHE3 and microbiota profile. Am J Physiol Gastrointest Liver Physiol 308:G497–G509CrossRefPubMedGoogle Scholar
  8. 8.
    Cunningham SA, Worrell RT, Benos DJ et al (1992) cAMP-stimulated ion currents in Xenopus oocytes expressing CFTR cRNA. Am J Phys 262:C783–C788CrossRefGoogle Scholar
  9. 9.
    Hitchcock MJ, Ginns EI, Marcus-Sekura CJ (1987) Microinjection into Xenopus oocytes: equipment. Methods Enzymol 152:276–284CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Kristen A. Engevik
    • 1
  • Andrea L. Matthis
    • 1
  • Marshall H. Montrose
    • 1
  • Eitaro Aihara
    • 1
    Email author
  1. 1.Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiUSA

Personalised recommendations