Skip to main content

Molecular Methods to Analyze the Effect of Proteins Expressed by Salmonella During Its Intracellular Stage

  • Protocol
  • First Online:
Host-Pathogen Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1734))

Abstract

Salmonella is probably the intracellular pathogen most extensively studied. Once inside the cell, this bacterium produces different proteins involved in the infection process known as effectors that translocate through its own secretion systems to the eukaryotic cytosol exerting diverse effects on the cell. Additionally, Salmonella can be engineered to include a protein expression system that, upon the addition of an inducer molecule, can produce heterologous proteins at a specific time during the course of the infection. The effect of such proteins on the eukaryotic (i.e., tumoral) cells can be detected following distinct approaches, which converts Salmonella in an effective tool to produce proteins inside eukaryotic cells with different purposes, such as killing tumoral cells. Here, we present diverse technics currently used to produce proteins by Salmonella inside tumoral cells and analyze its cytotoxic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pawelek JM, Low KB, Bermudes D (2003) Bacteria as tumour-targeting vectors. Lancet Oncol 4:548–556

    Article  PubMed  Google Scholar 

  2. Malmgren RA, Flanigan CC (1955) Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer Res 15:473–478

    CAS  PubMed  Google Scholar 

  3. Pawelek JM, Low KB, Bermudes D (1997) Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res 57:4537–4544

    CAS  PubMed  Google Scholar 

  4. Kasinskas RW, Forbes NS (2007) Salmonella Typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res 67:3201–3209

    Article  CAS  PubMed  Google Scholar 

  5. Zheng JH, Min JJ (2016) Targeted cancer therapy using engineered Salmonella Typhimurium. Chonnam Med J 52:173–184

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang CZ, Kazmierczak RA, Eisenstark A (2016) Strains, mechanism, and perspective: Salmonella-Based Cancer therapy. Int J Microbiol 2016:5678702

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hoffman RM (2016) Future of bacterial therapy of cancer. Methods Mol Biol 1409:177–184

    Article  PubMed  Google Scholar 

  8. Pinero-Lambea C, Ruano-Gallego D, Fernandez LA (2015) Engineered bacteria as therapeutic agents. Curr Opin Biotech 35:94–102

    Article  CAS  PubMed  Google Scholar 

  9. Zhang M, Forbes NS (2015) Trg-deficient Salmonella colonize quiescent tumor regions by exclusively penetrating or proliferating. J Control Release 199:180–189

    Article  CAS  PubMed  Google Scholar 

  10. Wong S, Slavcev RA (2015) Treating cancer with infection: a review on bacterial cancer therapy. Lett Appl Microbiol 61:107–112

    Article  CAS  PubMed  Google Scholar 

  11. Kim JE, Phan TX, Nguyen VH et al (2015) Salmonella Typhimurium suppresses tumor growth via the pro-inflammatory cytokine interleukin-1beta. Theranostics 5:1328–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chorobik P, Czaplicki D, Ossysek K et al (2013) Salmonella and cancer: from pathogens to therapeutics. Acta Biochim Pol 60:285–297

    CAS  PubMed  Google Scholar 

  13. Forbes NS (2010) Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer 10:785–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Williams KJ, Joyce G, Robertson BD (2010) Improved mycobacterial tetracycline inducible vectors. Plasmid 64:69–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Royo JL, Becker PD, Camacho EM et al (2007) In vivo gene regulation in Salmonella spp. by a salicylate-dependent control circuit. Nat Methods 4:937–942

    Article  CAS  PubMed  Google Scholar 

  16. Cebolla A, Royo JL, De Lorenzo V et al (2002) Improvement of recombinant protein yield by a combination of transcriptional amplification and stabilization of gene expression. Appl Environ Microbiol 68:5034–5041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Medina C, Camacho EM, Flores A et al (2011) Improved expression systems for regulated expression in Salmonella infecting eukaryotic cells. PLoS One 6:e23055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Camacho EM, Mesa-Pereira B, Medina C et al (2016) Engineering Salmonella as intracellular factory for effective killing of tumour cells. Sci Rep 6:30591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beuzon CR, Meresse S, Unsworth KE et al (2000) Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J 19:3235–3249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mesa-Pereira B, Medina C, Camacho EM et al (2013) Novel tools to analyze the function of Salmonella effectors show that SvpB ectopic expression induces cell cycle arrest in tumor cells. PLoS One 8:e78458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuriyama S, Masui K, Sakamoto T et al (1998) Bystander effect caused by cytosine deaminase gene and 5-fluorocytosine in vitro is substantially mediated by generated 5-fluorouracil. Anticancer Res 18:3399–3406

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all members of the laboratory for their insights and helpful suggestions, and Guadalupe Martín Cabello for technical help. This work was supported by the Grant ‘Proyecto de Excelencia P07-CVI02518’ from the Andalusian government and by Spanish Ministry of Science and Innovation grants BIO2014-57545-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Medina, C., Mesa-Pereira, B., Camacho, E.M., Flores, A., Santero, E. (2018). Molecular Methods to Analyze the Effect of Proteins Expressed by Salmonella During Its Intracellular Stage. In: Medina, C., López-Baena, F. (eds) Host-Pathogen Interactions. Methods in Molecular Biology, vol 1734. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7604-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7604-1_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7603-4

  • Online ISBN: 978-1-4939-7604-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics