Skip to main content

Screening of c-di-GMP-Regulated Exopolysaccharides in Host Interacting Bacteria

  • Protocol
  • First Online:
Host-Pathogen Interactions

Abstract

Bacterial exopolysaccharides (EPS) often confer a survival advantage by protecting the cell against abiotic and biotic stresses, including host defensive factors. They are also main components of the extracellular matrix involved in cell–cell recognition, surface adhesion and biofilm formation. Biosynthesis of a growing number of EPS has been reported to be regulated by the ubiquitous second messenger c-di-GMP, which promotes the transition to a biofilm mode of growth in an intimate association with the eukaryotic host. Here we describe a strategy based on the combination of an approach to artificially increase the intracellular level of c-di-GMP in virtually any gram-negative bacteria with a high throughput screening (HTS) for the identification of monosaccharide composition and carbohydrate fingerprinting of novel EPS, or modified variants, that can be involved in host–bacteria interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitfield GB, Marmont LS, Howell L (2015) Enzymatic modifications of exopolysaccharides enhance bacterial persistence. Front Microbiol 6:471

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gunn JS, Bakaletz LO, Wozniak DJ (2016) What’s on the outside matters: the role of the extracellular polymeric substance of gram-negative biofilms in evading host immunity and as a target for therapeutic intervention. J Biol Chem 291(24):12538–12546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Killiny N, Martínez RH, Dumenyo CK et al (2013) The exopolysaccharide of Xylella fastidiosa is essential for biofilm formation, plant virulence, and vector transmission. Mol Plant-Microbe Interact 26:1044–1053

    Article  CAS  PubMed  Google Scholar 

  4. Baker P, Hill PJ, Snarr BD et al (2016) Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci Adv 2:e1501632

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yu S, Su T, Wu H et al (2015) PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Res 25:1352–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawaharada Y, Kelly S, Nielsen MW et al (2015) Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 523:308–312

    Article  CAS  PubMed  Google Scholar 

  7. Skorupska A, Janczarek M, Marczak M et al (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Factories 5:7

    Article  Google Scholar 

  8. Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52

    Article  PubMed  PubMed Central  Google Scholar 

  9. Römling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57:629–639

    Article  PubMed  Google Scholar 

  10. Galperin MY, Higdon R, Kolker E (2010) Interplay of heritage and habitat in the distribution of bacterial signal transduction systems. Mol BioSyst 6:721–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caly DL, Bellini D, Walsh MA et al (2015) Targeting cyclic di-GMP signalling: a strategy to control biofilm formation? Curr Pharm Des 21:12–24

    Article  CAS  PubMed  Google Scholar 

  12. Liang ZX (2015) The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites. Nat Prod Rep 32:663–683

    Article  CAS  PubMed  Google Scholar 

  13. Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 6:496

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ryan RP, Fouhy Y, Lucey JF et al (2007) Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63:429–442

    Article  CAS  PubMed  Google Scholar 

  15. Chatterjee S, Killiny N, Almeida RP et al (2010) Role of cyclic di-GMP in Xylella fastidiosa biofilm formation, plant virulence, and insect transmission. Mol Plant-Microbe Interact 23:1356–1363

    Article  CAS  PubMed  Google Scholar 

  16. Ross P, Weinhouse H, Aloni Y et al (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–281

    Article  CAS  PubMed  Google Scholar 

  17. Pérez-Mendoza D, Sanjuán J (2016) Exploiting the commons: cyclic diguanylate regulation of bacterial exopolysaccharide production. Curr Opin Microbiol 30:36–43

    Article  PubMed  Google Scholar 

  18. Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rühmann B, Schmid J, Sieber V (2015) Methods to identify the unexplored diversity of microbial exopolysaccharides. Front Microbiol 6:565

    PubMed  PubMed Central  Google Scholar 

  20. Bylund J, Burgess LA, Cescutti P et al (2006) Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species. J Biol Chem 281:2526–2532

    Article  CAS  PubMed  Google Scholar 

  21. Schmid J, Sieber V (2015) Enzymatic transformations involved in the biosynthesis of microbial exo-polysaccharides based on the assembly of repeat units. Chembiochem 16:1141–1147

    Article  CAS  PubMed  Google Scholar 

  22. Wilson RP, Winter SE, Spees AM et al (2011) The Vi capsular polysaccharide prevents complement receptor 3-mediated clearance of Salmonella enterica serotype Typhi. Infect Immun 79:830–837

    Article  CAS  PubMed  Google Scholar 

  23. Marshall JM, Gunn JS (2015) The O-antigen capsule of Salmonella enterica serovar Typhimurium facilitates serum resistance and surface expression of FliC. Infect Immun 83:3946–3959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pérez-Mendoza D, Coulthurst SJ, Sanjuán J et al (2011) N-Acetylglucosamine-dependent biofilm formation in Pectobacterium atrosepticum is cryptic and activated by elevated c-di-GMP levels. Microbiology 157:3340–3348

    Article  PubMed  Google Scholar 

  25. Pérez-Mendoza D, Rodríguez-Carvajal MA, Romero-Jiménez L et al (2015) Novel mixed-linkage beta-glucan activated by c-di-GMP in Sinorhizobium meliloti. Proc Natl Acad Sci U S A 112:E757–E765

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rühmann B, Schmid J, Sieber V (2015) High throughput exopolysaccharide screening platform: from strain cultivation to monosaccharide composition and carbohydrate fingerprinting in one day. Carbohydr Polym 122:212–220

    Article  PubMed  Google Scholar 

  27. Romero-Jiménez L, Rodríguez-Carbonell D, Gallegos MT et al (2015) Mini-Tn7 vectors for stable expression of diguanylate cyclase PleD* in Gram-negative bacteria. BMC Microbiol 15:190

    Article  PubMed  PubMed Central  Google Scholar 

  28. Waddell CS, Craig NL (1989) Tn7 transposition: recognition of the attTn7 target sequence. Proc Natl Acad Sci U S A 86:3958–3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bao Y, Lies DP, Fu H et al (1991) An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. Gene 109:167–168

    Article  CAS  PubMed  Google Scholar 

  30. Peters JE, Craig NL (2001) Tn7: smarter than we thought. Nat Rev Mol Cell Biol 2:806–814

    Article  CAS  PubMed  Google Scholar 

  31. Choi KH, Schweizer HP (2006) mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protocol 1:153–161

    Article  CAS  Google Scholar 

  32. Rühmann B, Schmid J, Sieber V (2016) Automated modular high throughput exopolysaccharide screening platform coupled with highly sensitive carbohydrate fingerprint analysis. J Vis Exp 110:e53249

    Google Scholar 

  33. Demarre G, Guerout AM, Matsumoto-Mashimo C et al (2005) A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncP alpha) conjugative machineries and their cognate Escherichia coli host strains. Res Microbiol 156:245–255

    Article  CAS  PubMed  Google Scholar 

  34. Blatny JM, Brautaset T, Winther-Larsen HC et al (1997) Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Environ Microbiol 63:370–379

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pérez-Mendoza D, Aragón IM, Prada-Ramírez HA et al (2014) Responses to elevated c-di-GMP levels in mutualistic and pathogenic plant-interacting bacteria. PLoS One 9:e91645

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rühmann B, Schmid J, Sieber V (2014) Fast carbohydrate analysis via liquid chromatography coupled with ultra violet and electrospray ionization ion trap detection in 96-well format. J Chromatogr A 1350:44–50

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pérez-Mendoza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schmid, J., Rühmann, B., Sieber, V., Romero-Jiménez, L., Sanjuán, J., Pérez-Mendoza, D. (2018). Screening of c-di-GMP-Regulated Exopolysaccharides in Host Interacting Bacteria. In: Medina, C., López-Baena, F. (eds) Host-Pathogen Interactions. Methods in Molecular Biology, vol 1734. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7604-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7604-1_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7603-4

  • Online ISBN: 978-1-4939-7604-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics