Advertisement

Screening of c-di-GMP-Regulated Exopolysaccharides in Host Interacting Bacteria

  • Jochen Schmid
  • Broder Rühmann
  • Volker Sieber
  • Lorena Romero-Jiménez
  • Juan Sanjuán
  • Daniel Pérez-MendozaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1734)

Abstract

Bacterial exopolysaccharides (EPS) often confer a survival advantage by protecting the cell against abiotic and biotic stresses, including host defensive factors. They are also main components of the extracellular matrix involved in cell–cell recognition, surface adhesion and biofilm formation. Biosynthesis of a growing number of EPS has been reported to be regulated by the ubiquitous second messenger c-di-GMP, which promotes the transition to a biofilm mode of growth in an intimate association with the eukaryotic host. Here we describe a strategy based on the combination of an approach to artificially increase the intracellular level of c-di-GMP in virtually any gram-negative bacteria with a high throughput screening (HTS) for the identification of monosaccharide composition and carbohydrate fingerprinting of novel EPS, or modified variants, that can be involved in host–bacteria interactions.

Key words

Exopolysaccharide c-di-GMP High Throughput Screening Carbohydrate Fingerprint Biofilm 

References

  1. 1.
    Whitfield GB, Marmont LS, Howell L (2015) Enzymatic modifications of exopolysaccharides enhance bacterial persistence. Front Microbiol 6:471CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gunn JS, Bakaletz LO, Wozniak DJ (2016) What’s on the outside matters: the role of the extracellular polymeric substance of gram-negative biofilms in evading host immunity and as a target for therapeutic intervention. J Biol Chem 291(24):12538–12546CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Killiny N, Martínez RH, Dumenyo CK et al (2013) The exopolysaccharide of Xylella fastidiosa is essential for biofilm formation, plant virulence, and vector transmission. Mol Plant-Microbe Interact 26:1044–1053CrossRefPubMedGoogle Scholar
  4. 4.
    Baker P, Hill PJ, Snarr BD et al (2016) Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci Adv 2:e1501632CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yu S, Su T, Wu H et al (2015) PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Res 25:1352–1367CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kawaharada Y, Kelly S, Nielsen MW et al (2015) Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 523:308–312CrossRefPubMedGoogle Scholar
  7. 7.
    Skorupska A, Janczarek M, Marczak M et al (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Factories 5:7CrossRefGoogle Scholar
  8. 8.
    Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Römling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57:629–639CrossRefPubMedGoogle Scholar
  10. 10.
    Galperin MY, Higdon R, Kolker E (2010) Interplay of heritage and habitat in the distribution of bacterial signal transduction systems. Mol BioSyst 6:721–728CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Caly DL, Bellini D, Walsh MA et al (2015) Targeting cyclic di-GMP signalling: a strategy to control biofilm formation? Curr Pharm Des 21:12–24CrossRefPubMedGoogle Scholar
  12. 12.
    Liang ZX (2015) The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites. Nat Prod Rep 32:663–683CrossRefPubMedGoogle Scholar
  13. 13.
    Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 6:496CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ryan RP, Fouhy Y, Lucey JF et al (2007) Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63:429–442CrossRefPubMedGoogle Scholar
  15. 15.
    Chatterjee S, Killiny N, Almeida RP et al (2010) Role of cyclic di-GMP in Xylella fastidiosa biofilm formation, plant virulence, and insect transmission. Mol Plant-Microbe Interact 23:1356–1363CrossRefPubMedGoogle Scholar
  16. 16.
    Ross P, Weinhouse H, Aloni Y et al (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–281CrossRefPubMedGoogle Scholar
  17. 17.
    Pérez-Mendoza D, Sanjuán J (2016) Exploiting the commons: cyclic diguanylate regulation of bacterial exopolysaccharide production. Curr Opin Microbiol 30:36–43CrossRefPubMedGoogle Scholar
  18. 18.
    Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rühmann B, Schmid J, Sieber V (2015) Methods to identify the unexplored diversity of microbial exopolysaccharides. Front Microbiol 6:565PubMedPubMedCentralGoogle Scholar
  20. 20.
    Bylund J, Burgess LA, Cescutti P et al (2006) Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species. J Biol Chem 281:2526–2532CrossRefPubMedGoogle Scholar
  21. 21.
    Schmid J, Sieber V (2015) Enzymatic transformations involved in the biosynthesis of microbial exo-polysaccharides based on the assembly of repeat units. Chembiochem 16:1141–1147CrossRefPubMedGoogle Scholar
  22. 22.
    Wilson RP, Winter SE, Spees AM et al (2011) The Vi capsular polysaccharide prevents complement receptor 3-mediated clearance of Salmonella enterica serotype Typhi. Infect Immun 79:830–837CrossRefPubMedGoogle Scholar
  23. 23.
    Marshall JM, Gunn JS (2015) The O-antigen capsule of Salmonella enterica serovar Typhimurium facilitates serum resistance and surface expression of FliC. Infect Immun 83:3946–3959CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pérez-Mendoza D, Coulthurst SJ, Sanjuán J et al (2011) N-Acetylglucosamine-dependent biofilm formation in Pectobacterium atrosepticum is cryptic and activated by elevated c-di-GMP levels. Microbiology 157:3340–3348CrossRefPubMedGoogle Scholar
  25. 25.
    Pérez-Mendoza D, Rodríguez-Carvajal MA, Romero-Jiménez L et al (2015) Novel mixed-linkage beta-glucan activated by c-di-GMP in Sinorhizobium meliloti. Proc Natl Acad Sci U S A 112:E757–E765CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rühmann B, Schmid J, Sieber V (2015) High throughput exopolysaccharide screening platform: from strain cultivation to monosaccharide composition and carbohydrate fingerprinting in one day. Carbohydr Polym 122:212–220CrossRefPubMedGoogle Scholar
  27. 27.
    Romero-Jiménez L, Rodríguez-Carbonell D, Gallegos MT et al (2015) Mini-Tn7 vectors for stable expression of diguanylate cyclase PleD* in Gram-negative bacteria. BMC Microbiol 15:190CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Waddell CS, Craig NL (1989) Tn7 transposition: recognition of the attTn7 target sequence. Proc Natl Acad Sci U S A 86:3958–3962CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bao Y, Lies DP, Fu H et al (1991) An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. Gene 109:167–168CrossRefPubMedGoogle Scholar
  30. 30.
    Peters JE, Craig NL (2001) Tn7: smarter than we thought. Nat Rev Mol Cell Biol 2:806–814CrossRefPubMedGoogle Scholar
  31. 31.
    Choi KH, Schweizer HP (2006) mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protocol 1:153–161CrossRefGoogle Scholar
  32. 32.
    Rühmann B, Schmid J, Sieber V (2016) Automated modular high throughput exopolysaccharide screening platform coupled with highly sensitive carbohydrate fingerprint analysis. J Vis Exp 110:e53249Google Scholar
  33. 33.
    Demarre G, Guerout AM, Matsumoto-Mashimo C et al (2005) A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncP alpha) conjugative machineries and their cognate Escherichia coli host strains. Res Microbiol 156:245–255CrossRefPubMedGoogle Scholar
  34. 34.
    Blatny JM, Brautaset T, Winther-Larsen HC et al (1997) Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Environ Microbiol 63:370–379PubMedPubMedCentralGoogle Scholar
  35. 35.
    Pérez-Mendoza D, Aragón IM, Prada-Ramírez HA et al (2014) Responses to elevated c-di-GMP levels in mutualistic and pathogenic plant-interacting bacteria. PLoS One 9:e91645CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rühmann B, Schmid J, Sieber V (2014) Fast carbohydrate analysis via liquid chromatography coupled with ultra violet and electrospray ionization ion trap detection in 96-well format. J Chromatogr A 1350:44–50CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Jochen Schmid
    • 1
  • Broder Rühmann
    • 1
  • Volker Sieber
    • 1
  • Lorena Romero-Jiménez
    • 2
  • Juan Sanjuán
    • 2
  • Daniel Pérez-Mendoza
    • 2
    Email author
  1. 1.Chair of Chemistry of Biogenic ResourcesTechnical University of MunichStraubingGermany
  2. 2.Dpto. Microbiología del Suelo y Sistemas SimbióticosEstación Experimental del Zaidín, CSICGranadaSpain

Personalised recommendations