In Vitro and In Vivo Secretion/Translocation Assays to Identify Novel Ralstonia solanacearum Type 3 Effectors

  • Fabien Lonjon
  • Nemo Peeters
  • Stéphane Genin
  • Fabienne VailleauEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1734)


Phytopathogenic bacteria have evolved multiple strategies to infect plants. Like many gram-negative bacteria, Ralstonia solanacearum, the causal agent of bacterial wilt, possesses a specialized protein secretion machinery to deliver effector proteins directly into the host cells. This type 3 secretion system (T3SS) and the bacterial proteins translocated, called type 3 effectors (T3Es), constitute the main pathogenicity determinants of the R. solanacearum species complex (RSSC). Up to 113 orthologous groups defining T3E genes have been identified among the RSSC strains sequenced to date. The increasing number of R. solanacearum genomic sequences available still expands the number of T3E candidates which require experimental validation. Here, we describe in vitro (type 3 secretion) and in vivo (type 3 translocation based on CyaA′ reporter gene) methods to identify and validate type 3-dependent delivery of proteins of interest highlighted as candidate T3Es. We also present protocols to generate dedicated vectors and R. solanacearum transformation to perform these experiments.

Key words

Secretion Translocation Ralstonia solanacearum Type 3 secretion system Type 3 effector CyaA′ 



Fabien Lonjon was funded by a grant from the French Ministry of National Education and Research. Fabienne Vailleau work was supported by a French Agence Nationale de la Recherche grant (ANR-2010-JCJC-1710-01). Our work is performed at the LIPM that is part of the Laboratoire d’Excellence (LABEX) entitled TULIP (ANR-10-LABX-41).


  1. 1.
    Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87CrossRefPubMedGoogle Scholar
  2. 2.
    Peeters N, Guidot A, Vailleau F, Valls M (2013) Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol Plant Pathol 14:651–662CrossRefPubMedGoogle Scholar
  3. 3.
    Mansfield J, Genin S, Magori S et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629CrossRefPubMedGoogle Scholar
  4. 4.
    Ailloud F, Lowe T, Cellier G et al (2015) Comparative genomic analysis of Ralstonia solanacearum reveals candidate genes for host specificity. BMC Genomics 16:270CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fegan M, Prior P (2005) How complex is the “Ralstonia solanacearum species complex.”. In: Allen C, Prior P, Hayward AC (eds) Bact. Wilt Dis. Ralstonia Solanacearum species complex. St Paul, MN, APS Press, pp 449–461Google Scholar
  6. 6.
    Prior P, Ailloud F, Dalsing BL et al (2016) Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species. BMC Genomics 17:90CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Safni I, Cleenwerck I, De Vos P et al (2014) Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int J Syst Evol Microbiol 64:3087–3103CrossRefPubMedGoogle Scholar
  8. 8.
    Genin S (2010) Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol 187:920–928CrossRefPubMedGoogle Scholar
  9. 9.
    Genin S, Denny TP (2012) Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol 50:67–89CrossRefPubMedGoogle Scholar
  10. 10.
    Boucher CA, Van Gijsegem F, Barberis PA et al (1987) Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered. J Bacteriol 169:5626–5632CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Büttner D (2016) Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 40:894–937CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Deslandes L, Rivas S (2012) Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci 17:644–655CrossRefPubMedGoogle Scholar
  13. 13.
    Macho AP (2016) Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity. New Phytol 210:51–57CrossRefPubMedGoogle Scholar
  14. 14.
    Peeters N, Carrère S, Anisimova M et al (2013) Repertoire, unified nomenclature and evolution of the type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics 14:859CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Angot A, Peeters N, Lechner E et al (2006) Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. Proc Natl Acad Sci U S A 103:14620–14625CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Turner M, Jauneau A, Genin S et al (2009) Dissection of bacterial wilt on Medicago truncatula revealed two type III secretion system effectors acting on root infection process and disease development. Plant Physiol 150:1713–1722CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen L, Shirota M, Zhang Y et al (2013) Involvement of HLK effectors in Ralstonia solanacearum disease development in tomato. J Gen Plant Pathol 80:79–84CrossRefGoogle Scholar
  18. 18.
    Remigi P, Anisimova M, Guidot A et al (2011) Functional diversification of the GALA type III effector family contributes to Ralstonia solanacearum adaptation on different plant hosts. New Phytol 192:976–987CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Solé M, Popa C, Mith O et al (2012) The awr gene family encodes a novel class of Ralstonia solanacearum type III effectors displaying virulence and avirulence activities. Mol Plant-Microbe Interact 25:941–953CrossRefPubMedGoogle Scholar
  20. 20.
    Deslandes L, Genin S (2014) Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms. Curr Opin Plant Biol 20:110–117CrossRefPubMedGoogle Scholar
  21. 21.
    Lohou D, Turner M, Lonjon F et al (2014) HpaP modulates type III effector secretion in Ralstonia solanacearum and harbours a substrate specificity switch domain essential for virulence. Mol Plant Pathol 15:601–614CrossRefPubMedGoogle Scholar
  22. 22.
    Lonjon F, Turner M, Henry C et al (2016) Comparative secretome analysis of Ralstonia solanacearum type 3 secretion-associated mutants reveals a fine control of effector delivery, essential for bacterial pathogenicity. Mol Cell Proteomics 15:598–613CrossRefPubMedGoogle Scholar
  23. 23.
    Sory MP, Cornelis GR (1994) Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol 14:583–594CrossRefPubMedGoogle Scholar
  24. 24.
    Cunnac S, Occhialini A, Barberis P et al (2004) Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system. Mol Microbiol 53:115–128CrossRefPubMedGoogle Scholar
  25. 25.
    Schechter LM, Roberts KA, Jamir Y et al (2004) Pseudomonas syringae type III secretion system targeting signals and novel effectors studied with a Cya translocation reporter. J Bacteriol 186:543–555CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mukaihara T, Tamura N, Iwabuchi M (2010) Genome-wide identification of a large repertoire of Ralstonia solanacearum type III effector proteins by a new functional screen. Mol Plant-Microbe Interact 23:251–262CrossRefPubMedGoogle Scholar
  27. 27.
    Plener L, Manfredi P, Valls M, Genin S (2010) PrhG, a transcriptional regulator responding to growth conditions, is involved in the control of the type III secretion system regulon in Ralstonia solanacearum. J Bacteriol 192:1011–1019CrossRefPubMedGoogle Scholar
  28. 28.
    Monteiro F, Solé M, van Dijk I, Valls M (2012) A chromosomal insertion toolbox for promoter probing, mutant complementation, and pathogenicity studies in Ralstonia solanacearum. Mol Plant-Microbe Interact 25:557–568CrossRefPubMedGoogle Scholar
  29. 29.
    Guéneron M, Timmers AC, Boucher C, Arlat M (2000) Two novel proteins, PopB, which has functional nuclear localization signals, and PopC, which has a large leucine-rich repeat domain, are secreted through the hrp-secretion apparatus of Ralstonia solanacearum. Mol Microbiol 36:261–277CrossRefPubMedGoogle Scholar
  30. 30.
    Van Gijsegem F, Vasse J, Camus JC et al (2000) Ralstonia solanacearum produces hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. Mol Microbiol 36:249–260CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Fabien Lonjon
    • 1
  • Nemo Peeters
    • 1
  • Stéphane Genin
    • 1
  • Fabienne Vailleau
    • 1
    Email author
  1. 1.LIPMUniversité de Toulouse, INRA, CNRS, INPTCastanet-TolosanFrance

Personalised recommendations