Generating Chromosome-Located Transcriptional Fusions to Fluorescent Proteins for Single-Cell Gene Expression Analysis in Pseudomonas syringae

  • José S. Rufián
  • Diego López-Márquez
  • Nieves López-Pagán
  • Murray Grant
  • Javier Ruiz-Albert
  • Carmen R. BeuzónEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1734)


The last decade has seen significant effort directed toward the role of phenotypic heterogeneity in bacterial adaptation. Phenotypic heterogeneity usually refers to phenotypic diversity that takes place through nongenetic means, independently of environmental induced variation. Recent findings are changing how microbiologists analyze bacterial behavior, with a shift from traditional assays averaging large populations to single-cell analysis focusing on bacterial individual behavior. Fluorescence-based methods are often used to analyze single-cell gene expression by flow cytometry, fluorescence microscopy and/or microfluidics. Moreover, fluorescence reporters can also be used to establish where and when are the genes of interest expressed. In this chapter, we use the model bacterial plant pathogen Pseudomonas syringae to illustrate a method to generate chromosome-located transcriptional gene fusions to fluorescent reporter genes, without affecting the function of the gene of interest.

Key words

Phenotypic heterogeneity Gene expression Fluorescent reporter genes Single-cell methods Fluorescence microscopy Nongenetic variation Allelic Exchange 



The work was supported by a Project Grant from Ministerio de Economía y Competitividad (Spain) (BIO2015-64391-R) awarded to C.R. Beuzón and J. Ruiz-Albert. M.G. and J.R. acknowledge support from the BBSRC/EPSRC Synthetic Biology Research Centre (BB/M017982/1) funded under the UK Research Councils’ Synthetic Biology for Growth Programme. The work was cofunded by Fondos Europeos de Desarrollo Regional (FEDER).


  1. 1.
    Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62(2):379–433PubMedPubMedCentralGoogle Scholar
  2. 2.
    Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13(6):614–629. CrossRefPubMedGoogle Scholar
  3. 3.
    Green S, Studholme DJ, Laue BE, Dorati F, Lovell H, Arnold D, Cottrell JE, Bridgett S, Blaxter M, Huitema E, Thwaites R, Sharp PM, Jackson RW, Kamoun S (2010) Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS One 5(4):e10224. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shenge KC, Mabagala RB, Mortensen CN, Stephan D, Wydra K (2007) First report of bacterial speck of tomato caused by Pseudomonas syringae pv. tomato in Tanzania. Plant Dis 91:462CrossRefGoogle Scholar
  5. 5.
    Morris CE, Sands DC, Vinatzer BA, Glaux C, Guilbaud C, Buffiere A, Yan S, Dominguez H, Thompson BM (2008) The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J 2(3):321–334. CrossRefPubMedGoogle Scholar
  6. 6.
    Rufián JS, Macho AP, Corry DS, Mansfield J, Ruiz-Albert J, Arnold D, Beuzón CR (2017) Confocal microscopy reveals in planta dynamic interactions between pathogenic, avirulent and non-pathogenic Pseudomonas syringae strains. Mol Plant Pathol.
  7. 7.
    Rohmer L, Guttman DS, Dangl JL (2004) Diverse evolutionary mechanisms shape the type III effector virulence factor repertoire in the plant pathogen Pseudomonas syringae. Genetics 167(3):1341–1360CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Alfano JR, Collmer A (1997) The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J Bacteriol 179(18):5655–5662CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Macho AP, Zipfel C (2015) Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr Opin Microbiol 23:14–22. CrossRefPubMedGoogle Scholar
  10. 10.
    Rufian JS, Sanchez-Romero MA, Lopez-Marquez D, Macho AP, Mansfield JW, Arnold DL, Ruiz-Albert J, Casadesus J, Beuzon CR (2016) Pseudomonas syringae differentiates into phenotypically distinct subpopulations during colonization of a plant host. Environ Microbiol 18(10):3593–3605. CrossRefPubMedGoogle Scholar
  11. 11.
    van Vliet S, Ackermann M (2015) Bacterial ventures into multicellularity: collectivism through individuality. PLoS Biol 13(6):e1002162. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Stecher B, Hapfelmeier S, Muller C, Kremer M, Stallmach T, Hardt WD (2004) Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun 72(7):4138–4150. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Saini S, Koirala S, Floess E, Mears PJ, Chemla YR, Golding I, Aldridge C, Aldridge PD, Rao CV (2010) FliZ induces a kinetic switch in flagellar gene expression. J Bacteriol 192(24):6477–6481. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stewart MK, Cookson BT (2012) Non-genetic diversity shapes infectious capacity and host resistance. Trends Microbiol 20(10):461–466. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bäumler AJ, Winter SE, Thiennimitr P, Casadesús J (2011) Intestinal and chronic infections: Salmonella lifestyles in hostile environments. Environ Microbiol Rep 3(5):508–517. CrossRefPubMedGoogle Scholar
  16. 16.
    Nielsen AT, Dolganov NA, Rasmussen T, Otto G, Miller MC, Felt SA, Torreilles S, Schoolnik GK (2010) A bistable switch and anatomical site control Vibrio cholerae virulence gene expression in the intestine. PLoS Pathog 6(9):e1001102. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Davis KM, Mohammadi S, Isberg RR (2015) Community behavior and spatial regulation within a bacterial microcolony in deep tissue sites serves to protect against host attack. Cell Host Microbe 17(1):21–31. CrossRefPubMedGoogle Scholar
  18. 18.
    Cuppels DA (1986) Generation and characterization of Tn5 insertion mutations in Pseudomonas syringae pv. tomato. Appl Environ Microbiol 51(2):323–327PubMedPubMedCentralGoogle Scholar
  19. 19.
    Hanahan D (1983) Studies of transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580CrossRefPubMedGoogle Scholar
  20. 20.
    Lennox ES (1955) Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1(2):190–206CrossRefPubMedGoogle Scholar
  21. 21.
    Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia Coli. J Bacteriol 62(3):293–300PubMedPubMedCentralGoogle Scholar
  22. 22.
    Zumaquero A, Macho AP, Rufián JS, Beuzón CR (2010) Analysis of the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in interaction with the plant. J Bacteriol 192(17):4474–4488. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia Coli with plasmids. Gene 96(1):23–28CrossRefPubMedGoogle Scholar
  24. 24.
    Stephen D, Jones C, Schofield JP (1990) A rapid method for isolating high quality plasmid DNA suitable for DNA sequencing. Nucleic Acids Res 18(24):7463–7464CrossRefPubMedGoogle Scholar
  25. 25.
    Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212(1):77–86CrossRefPubMedGoogle Scholar
  26. 26.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97(12):6640–6645CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas Aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48(6):1511–1524CrossRefPubMedGoogle Scholar
  28. 28.
    Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren L, Gadella TW Jr, Royant A (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3:751. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hautefort I, Thompson A, Eriksson-Ygberg S, Parker ML, Lucchini S, Danino V, Bongaerts RJ, Ahmad N, Rhen M, Hinton JC (2008) During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol 10(4):958–984. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • José S. Rufián
    • 1
  • Diego López-Márquez
    • 1
  • Nieves López-Pagán
    • 1
  • Murray Grant
    • 2
  • Javier Ruiz-Albert
    • 1
  • Carmen R. Beuzón
    • 1
    Email author
  1. 1.Dpto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y MediterráneaUniversidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC)MálagaSpain
  2. 2.School of Life SciencesUniversity of WarwickConventryUK

Personalised recommendations