Skip to main content

Detection of Bacterial Quorum Sensing Molecules

  • Protocol
  • First Online:
Host-Pathogen Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1734))

Abstract

Bacterial cells use the quorum sensing system to communicate with each other. The gram-negative species very often use N-acyl homoserine lactones for this purpose. One of the easiest ways to detect these molecules is the use of particular reporter strains, which possess different kinds of reporter genes under the control of AHL-responsive promoters. Here we present some of the possibilities available today, even for not specialized researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antunes LC, Ferreira RB (2009) Intercellular communication in bacteria. Crit Rev Microbiol 35:69–80

    Article  CAS  PubMed  Google Scholar 

  2. Nazzaro F, Fratianni F, Coppola R (2013) Quorum sensing and phytochemicals. Int J Mol Sci 14:12607–12619

    Article  PubMed  PubMed Central  Google Scholar 

  3. Teplitski M, Mathesius U, Rumbaugh KP (2010) Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem Rev 111:100–116

    Article  PubMed  Google Scholar 

  4. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  5. Kempner ES, Hanson FE (1968) Aspects of light production by Photobacterium fischeri. J Bacteriol 95:975–979

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ruby EG, Nealson KH (1976) Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica; a model of symbiosis based on bacterial studies. Biol Bull 151:574–586

    Article  CAS  PubMed  Google Scholar 

  7. Tomasz A (1965) Control of the competent state in Pneumococcus by a hormone-like cell product: an example for a new type of regulatory mechanism in bacteria. Nature 208:155–159

    Article  CAS  PubMed  Google Scholar 

  8. Engebrecht J, Silverman M (1984) Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci USA 81:4154–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938

    Article  CAS  PubMed  Google Scholar 

  10. Lyon GJ, Novick RP (2004) Peptide signaling in Staphylococcus aureus and other gram-positive bacteria. Peptides 25:1389–1403

    Article  CAS  PubMed  Google Scholar 

  11. Steidle A, Sigl K, Schuhegger R et al (2001) Visualization of N-Acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67:5761–5770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li D (2010) Phenotypic variation and molecular signaling in the interaction of the rhizosphere bacteria Acidovorax sp. N35 and Rhizobium radiobacter F4 with roots. Dissertation. The Ludwig Maximilian University, München

    Google Scholar 

  13. Andersen JB, Heydorn A, Hentzer M et al (2001) GFP-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Winson M, Swift S, Fish L et al (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192

    Article  CAS  PubMed  Google Scholar 

  15. Schikora M, Neupane B, Madhogaria S et al (2012) An image classification approach to analyze the suppression of plant immunity by the human pathogen Salmonella typhimurium. BMC Bioinformatics 13:171

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zarkani AA, Stein E, Röhrich CR et al (2013) Homoserine lactones influence the reaction of plants to rhizobia. Int J Mol Sci 14:17122–17146

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Prof. Anton Hartmann, who provided the reporter strains presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Schikora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stein, E., Schikora, A. (2018). Detection of Bacterial Quorum Sensing Molecules. In: Medina, C., López-Baena, F. (eds) Host-Pathogen Interactions. Methods in Molecular Biology, vol 1734. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7604-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7604-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7603-4

  • Online ISBN: 978-1-4939-7604-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics