Skip to main content

Neonatal Rat Cardiomyocytes Isolation, Culture, and Determination of MicroRNAs’ Effects in Proliferation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1733))

Abstract

Cardiomyocytes loss is a major contributor for many cardiovascular diseases including heart failure and myocardial infarction. Although extremely limited, adult cardiomyocytes are able to proliferate. Understanding the molecular mechanisms controlling cardiomyocytes proliferation is extremely important for enhancing cardiomyocyte proliferation to promote cardiac regeneration and repair. MicroRNAs (miRNAs, miRs) are powerful controllers of many essential biological processes including cell proliferation. Here, we described in detail a protocol for isolation and culture of neonatal rat cardiomyocytes and the determination of miRNAs’ effects in proliferation based on two well-established methods including EdU and Ki67 immunofluorescent stainings.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yutzey KE (2017) Cardiomyocyte proliferation: teaching an old dogma new tricks. Circ Res 120:627–629

    Article  CAS  PubMed  Google Scholar 

  2. Foglia MJ, Poss KD (2016) Building and re-building the heart by cardiomyocyte proliferation. Development 143:729–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Walsh S, Ponten A, Fleischmann BK, Jovinge S (2010) Cardiomyocyte cell cycle control and growth estimation in vivo – an analysis based on cardiomyocyte nuclei. Cardiovasc Res 86:365–373

    Article  CAS  PubMed  Google Scholar 

  4. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van Berlo JH, Molkentin JD (2014) An emerging consensus on cardiac regeneration. Nat Med 20:1386–1393

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, Xiao C, Bezzerides V, Bostrom P, Che L, Zhang C, Spiegelman BM, Rosenzweig A (2015) miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab 21:584–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493:433–436

    Article  CAS  PubMed  Google Scholar 

  9. Malliaras K, Zhang Y, Seinfeld J, Galang G, Tseliou E, Cheng K, Sun B, Aminzadeh M, Marban E (2013) Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med 5:191–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koitabashi N, Kass DA (2011) Reverse remodeling in heart failure – mechanisms and therapeutic opportunities. Nat Rev Cardiol 9:147–157

    Article  PubMed  Google Scholar 

  11. Louch WE, Sheehan KA, Wolska BM (2011) Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol 51:288–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. LaFramboise WA, Scalise D, Stoodley P, Graner SR, Guthrie RD, Magovern JA, Becich MJ (2007) Cardiac fibroblasts influence cardiomyocyte phenotype in vitro. Am J Physiol Cell Physiol 292:C1799–C1808

    Article  CAS  PubMed  Google Scholar 

  13. Dispersyn GD, Geuens E, Ver Donck L, Ramaekers FC, Borgers M (2001) Adult rabbit cardiomyocytes undergo hibernation-like dedifferentiation when co-cultured with cardiac fibroblasts. Cardiovasc Res 51:230–240

    Article  CAS  PubMed  Google Scholar 

  14. Miragoli M, Salvarani N, Rohr S (2007) Myofibroblasts induce ectopic activity in cardiac tissue. Circ Res 101:755–758

    CAS  PubMed  Google Scholar 

  15. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105:2415–2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tao L, Bei Y, Chen P, Lei Z, Fu S, Zhang H, Xu J, Che L, Chen X, Sluijter JP, Das S, Cretoiu D, Xu B, Zhong J, Xiao J, Li X (2016) Crucial role of miR-433 in regulating cardiac fibrosis. Theranostics 6:2068–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pathmanathan N, Balleine RL (2013) Ki67 and proliferation in breast cancer. J Clin Pathol 66(6):512

    Article  CAS  PubMed  Google Scholar 

  18. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:376–381

    Article  CAS  PubMed  Google Scholar 

  19. Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, Wang H, Xuan Q, Chen P, Xu J, Che L, Liu H, Zhong J, Sluijter JP, Li X, Rosenzweig A, Xiao J (2017) miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics 7:664–676

    Article  PubMed  PubMed Central  Google Scholar 

  20. Piccoli MT, Gupta SK, Thum T (2015) Noncoding RNAs as regulators of cardiomyocyte proliferation and death. J Mol Cell Cardiol 89:59–67

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from National Natural Science Foundation of China (81570362, 91639101, and 81200169 to J.J. Xiao and 81400647 to Y. Bei), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-09-E00042), the grant from Science and Technology Commission of Shanghai Municipality (17010500100), and the development fund for Shanghai talents (to J.J. Xiao).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tao, L., Bei, Y., Li, Y., Xiao, J. (2018). Neonatal Rat Cardiomyocytes Isolation, Culture, and Determination of MicroRNAs’ Effects in Proliferation. In: Ying, SY. (eds) MicroRNA Protocols . Methods in Molecular Biology, vol 1733. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7601-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7601-0_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7600-3

  • Online ISBN: 978-1-4939-7601-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics