Skip to main content

A Flow Cytometry-Based Protocol to Measure Lymphocyte Viability Upon Metabolic Stress

  • Protocol
  • First Online:
Book cover AMPK

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1732))

  • 3011 Accesses

Abstract

Distinct lymphocyte subpopulations display discrete metabolic profiles and are differently affected by metabolic resource variations, making the analysis of lymphocyte survival in a complex tissue in response to metabolic stress highly challenging. Here we describe a flow cytometry-based method allowing simultaneous cell identification and viable cell counting in mixed lymphocyte populations without extensive cell subset purification procedures. The example provided herein illustrates the role of AMPK in T lymphocyte survival in response to the mitochondrial poison oligomycin.

Sébastien Denanglaire and Tiphène Pirnay are Co-first authors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suter M, Riek U, Tuerk R, Schlattner U, Wallimann T, Neumann D (2006) Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J Biol Chem 281:32207–32216

    Article  CAS  PubMed  Google Scholar 

  2. Viollet B, Horman S, Leclerc J, Lantier L, Foretz M, Billaud M et al (2010) AMPK inhibition in health and disease. Crit Rev Biochem Mol Biol 45:276–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hardie DG (2004) Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144:5179–5183

    Article  Google Scholar 

  4. Marsin A-S, Bouzin C, Bertrand L, Hue L (2002) The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J Biol Chem 277:30778–30783

    Article  CAS  PubMed  Google Scholar 

  5. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR et al (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16:769–777

    Article  CAS  PubMed  Google Scholar 

  6. van der Windt GJW, Everts B, Chang C-H, Curtis JD, Freitas TC, Amiel E et al (2012) Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36:68–78

    Article  PubMed  Google Scholar 

  7. Pearce EL, Poffenberger MC, Chang C-H, Jones RG (2013) Fueling immunity: insights into metabolism and lymphocyte function. Science 342:1242454

    Article  PubMed  PubMed Central  Google Scholar 

  8. Andris F, Leo O (2015) AMPK in lymphocyte metabolism and function. Int Rev Immunol 34:67–81

    Article  CAS  PubMed  Google Scholar 

  9. Loftus RM, Finlay DK (2016) Immunometabolism: cellular metabolism turns immune regulator. J Biol Chem 291:1–10

    Article  CAS  PubMed  Google Scholar 

  10. Vuillefroy de Silly R, Dietrich P-Y, Walker PR (2016) Hypoxia and antitumor CD8(+) T cells: an incompatible alliance? Oncoimmunology 5:e1232236

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H et al (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 69:4918–4925

    Article  CAS  PubMed  Google Scholar 

  12. Ho P-C, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R et al (2015) Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162:1217–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang C-H, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mayer A, Denanglaire S, Viollet B, Leo O, Andris F (2008) AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function. Eur J Immunol 38:948–956

    Article  CAS  PubMed  Google Scholar 

  15. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF et al (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186:3299–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D et al (2014) The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab 20:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zola H, Swart B, Banham A, Barry S, Beare A, Bensussan A et al (2007) CD molecules 2006 – human cell differentiation molecules. J Immunol Methods 319:1–5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The laboratory is supported by the European Regional Development Fund (ERDF), the Walloon Region (Wallonia-Biomed portfolio, 411132-957270), a Research Concerted Action of the Communauté Française de Belgique, a grant from the Fonds Jean Brachet, and a research credit from the National Fund for Scientific Research, FNRS, Belgium, and by the Belgian Program in Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister’s office, Science Policy Programming. F.A. is a Research Associate at the FNRS. T.P. was supported by a FNRS/Télévie fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabienne Andris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Denanglaire, S., Pirnay, T., Leo, O., Andris, F. (2018). A Flow Cytometry-Based Protocol to Measure Lymphocyte Viability Upon Metabolic Stress. In: Neumann, D., Viollet, B. (eds) AMPK. Methods in Molecular Biology, vol 1732. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7598-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7598-3_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7597-6

  • Online ISBN: 978-1-4939-7598-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics