Skip to main content

Measurement of AMPK-Induced Inhibition of Lipid Synthesis Flux in Cultured Cells

  • Protocol
  • First Online:
AMPK

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1732))

Abstract

AMP-activated protein kinase (AMPK) is a master regulator of multiple cellular metabolic pathways, including lipid metabolism. Some of the well-known substrates of AMPK are acetyl-CoA carboxylase (ACC) and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, regulatory enzymes of fatty acid and cholesterol synthesis, respectively. The discovery that both of them are inactivated by AMPK suggested the therapeutic potential of AMPK activation in the treatment of metabolic diseases associated with lipid disorders, such as nonalcoholic fatty liver disease (NAFLD). Here we describe a method to measure lipid synthesis flux in intact cells from the saponifiable (including fatty acids) and non-saponifiable (including sterols) fractions of lipid extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hardie DG (2014) AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr 34:31–55. https://doi.org/10.1146/annurev-nutr-071812-161148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Clarke PR, Hardie DG (1990) Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J 9(8):2439–2446

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Carling D, Clarke PR, Zammit VA, Hardie DG (1989) Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities. Eur J Biochem 186(1–2):129–136

    Article  CAS  PubMed  Google Scholar 

  4. Foretz M, Viollet B (2011) Regulation of hepatic metabolism by AMPK. J Hepatol 54(4):827–829. https://doi.org/10.1016/j.jhep.2010.09.014

    Article  PubMed  Google Scholar 

  5. Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR (2016) Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab 311(4):E730–E740. https://doi.org/10.1152/ajpendo.00225.2016

    Article  PubMed  Google Scholar 

  6. Zadra G, Photopoulos C, Tyekucheva S, Heidari P, Weng QP, Fedele G, Liu H, Scaglia N, Priolo C, Sicinska E, Mahmood U, Signoretti S, Birnberg N, Loda M (2014) A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis. EMBO Mol Med 6(4):519–538. https://doi.org/10.1002/emmm.201302734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O’Brien AJ, Villani LA, Broadfield LA, Houde VP, Galic S, Blandino G, Kemp BE, Tsakiridis T, Muti P, Steinberg GR (2015) Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis. Biochem J 469(2):177–187. https://doi.org/10.1042/BJ20150122

    Article  PubMed  Google Scholar 

  8. Xie W, Wang L, Dai Q, Yu H, He X, Xiong J, Sheng H, Zhang D, Xin R, Qi Y, Hu F, Guo S, Zhang K (2015) Activation of AMPK restricts coxsackievirus B3 replication by inhibiting lipid accumulation. J Mol Cell Cardiol 85:155–167. https://doi.org/10.1016/j.yjmcc.2015.05.021

    Article  CAS  PubMed  Google Scholar 

  9. Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3(6):403–416. https://doi.org/10.1016/j.cmet.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  10. Hunter RW, Foretz M, Bultot L, Fullerton MD, Deak M, Ross FA, Hawley SA, Shpiro N, Viollet B, Barron D, Kemp BE, Steinberg GR, Hardie DG, Sakamoto K (2014) Mechanism of action of compound-13: an alpha1-selective small molecule activator of AMPK. Chem Biol 21(7):866–879. https://doi.org/10.1016/j.chembiol.2014.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, O’Neill HM, Ford RJ, Palanivel R, O’Brien M, Hardie DG, Macaulay SL, Schertzer JD, Dyck JR, van Denderen BJ, Kemp BE, Steinberg GR (2013) Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 19(12):1649–1654. https://doi.org/10.1038/nm.3372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gomez-Galeno JE, Dang Q, Nguyen TH, Boyer SH, Grote MP, Sun Z, Chen M, Craigo WA, van Poelje PD, MacKenna DA, Cable EE, Rolzin PA, Finn PD, Chi B, Linemeyer DL, Hecker SJ, Erion MD (2010) A potent and selective AMPK activator that inhibits de novo lipogenesis. ACS Med Chem Lett 1(9):478–482. https://doi.org/10.1021/ml100143q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ford RJ, Fullerton MD, Pinkosky SL, Day EA, Scott JW, Oakhill JS, Bujak AL, Smith BK, Crane JD, Blumer RM, Marcinko K, Kemp BE, Gerstein HC, Steinberg GR (2015) Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J 468(1):125–132. https://doi.org/10.1042/BJ20150125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ducommun S, Ford RJ, Bultot L, Deak M, Bertrand L, Kemp BE, Steinberg GR, Sakamoto K (2014) Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662. Am J Physiol Endocrinol Metab 306(6):E688–E696. https://doi.org/10.1152/ajpendo.00672.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, Sakamoto K, Andreelli F, Viollet B (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120(7):2355–2369. https://doi.org/10.1172/JCI40671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laishes BA, Williams GM (1976) Conditions affecting primary cell cultures of functional adult rat hepatocytes. II. Dexamethasone enhanced longevity and maintenance of morphology. In Vitro 12(12):821–832

    Article  CAS  PubMed  Google Scholar 

  17. Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348(Pt 3):607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275(1):223–228

    Article  CAS  PubMed  Google Scholar 

  19. Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, Giordanetto F, Martin SR, Carling D, Gamblin SJ (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:3017. https://doi.org/10.1038/ncomms4017

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work from the authors was performed within the Département Hospitalo-Universitaire (DHU) AUToimmune and HORmonal diseaseS (AUTHORS) and was supported by grants from INSERM, CNRS, Université Paris Descartes, Agence Nationale de la Recherche (ANR), and Société Francophone du Diabète (SFD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Foretz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Foretz, M., Viollet, B. (2018). Measurement of AMPK-Induced Inhibition of Lipid Synthesis Flux in Cultured Cells. In: Neumann, D., Viollet, B. (eds) AMPK. Methods in Molecular Biology, vol 1732. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7598-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7598-3_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7597-6

  • Online ISBN: 978-1-4939-7598-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics