Skip to main content

Assessment of AMPK-Stimulated Cellular Long-Chain Fatty Acid and Glucose Uptake

  • Protocol
  • First Online:
AMPK

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1732))

Abstract

Here we describe an assay for simultaneous measurement of cellular uptake rates of long-chain fatty acids (LCFA) and glucose that can be applied to cells in suspension. The uptake assay includes the use of radiolabeled substrates at such concentrations and incubation periods that exact information is provided about unidirectional uptakes rates. Cellular uptake of both substrates is under regulation of AMPK. The underlying mechanism includes the translocation of LCFA and glucose transporters from intracellular membrane compartments to the cell surface, leading to an increase in substrate uptake. In this chapter, we explain the principles of the uptake assay before detailing the exact procedure. We also provide information of the specific LCFA and glucose transporters subject to AMPK-mediated subcellular translocation. Finally, we discuss the application of AMPK inhibitors and activators in combination with cellular substrate uptake assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106(2):171–176. https://doi.org/10.1172/JCI10583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Luiken JJ, Schaap FG, van Nieuwenhoven FA, van der Vusse GJ, Bonen A, Glatz JF (1999) Cellular fatty acid transport in heart and skeletal muscle as facilitated by proteins. Lipids 34(Suppl):S169–S175

    Article  CAS  PubMed  Google Scholar 

  3. Glatz JF, Luiken JJ, Bonen A (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90(1):367–417. https://doi.org/10.1152/physrev.00003.2009

    Article  CAS  PubMed  Google Scholar 

  4. Mueckler M (1994) Facilitative glucose transporters. Eur J Biochem 219(3):713–725

    Article  CAS  PubMed  Google Scholar 

  5. Rose H, Hennecke T, Kammermeier H (1990) Sarcolemmal fatty acid transfer in isolated cardiomyocytes governed by albumin/membrane-lipid partition. J Mol Cell Cardiol 22(8):883–892

    Article  CAS  PubMed  Google Scholar 

  6. Hamilton JA, Johnson RA, Corkey B, Kamp F (2001) Fatty acid transport: the diffusion mechanism in model and biological membranes. J Mol Neurosci 16(2–3):99–108.; discussion 151–157. https://doi.org/10.1385/JMN:16:2-3:99

    Article  CAS  PubMed  Google Scholar 

  7. Sorrentino D, Stump D, Potter BJ, Robinson RB, White R, Kiang CL, Berk PD (1988) Oleate uptake by cardiac myocytes is carrier mediated and involves a 40-kD plasma membrane fatty acid binding protein similar to that in liver, adipose tissue, and gut. J Clin Invest 82(3):928–935. https://doi.org/10.1172/JCI113700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luiken JJ, van Nieuwenhoven FA, America G, van der Vusse GJ, Glatz JF (1997) Uptake and metabolism of palmitate by isolated cardiac myocytes from adult rats: involvement of sarcolemmal proteins. J Lipid Res 38(4):745–758

    CAS  PubMed  Google Scholar 

  9. Schwenk RW, Dirkx E, Coumans WA, Bonen A, Klip A, Glatz JF, Luiken JJ (2010) Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia 53(10):2209–2219. https://doi.org/10.1007/s00125-010-1832-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Nieuwenhoven FA, Luiken JJ, De Jong YF, Grimaldi PA, Van der Vusse GJ, Glatz JF (1998) Stable transfection of fatty acid translocase (CD36) in a rat heart muscle cell line (H9c2). J Lipid Res 39(10):2039–2047

    PubMed  Google Scholar 

  11. Oakes ND, Kjellstedt A, Forsberg GB, Clementz T, Camejo G, Furler SM, Kraegen EW, Olwegard-Halvarsson M, Jenkins AB, Ljung B (1999) Development and initial evaluation of a novel method for assessing tissue-specific plasma free fatty acid utilization in vivo using (R)-2-bromopalmitate tracer. J Lipid Res 40(6):1155–1169

    CAS  PubMed  Google Scholar 

  12. Verberne HJ, Sloof GW, Beets AL, Murphy AM, van Eck-Smit BL, Knapp FF (2003) 125I-BMIPP and 18F-FDG uptake in a transgenic mouse model of stunned myocardium. Eur J Nucl Med Mol Imaging 30(3):431–439

    Article  CAS  PubMed  Google Scholar 

  13. Vorum H, Brodersen R, Kragh-Hansen U, Pedersen AO (1992) Solubility of long-chain fatty acids in phosphate buffer at pH 7.4. Biochim Biophys Acta 1126(2):135–142

    Article  CAS  PubMed  Google Scholar 

  14. Richieri GV, Ogata RT, Kleinfeld AM (1994) Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J Biol Chem 269(39):23918–23930

    CAS  PubMed  Google Scholar 

  15. Andersen BL, Tarpley HT, Regen DM (1978) Characterization of beta-hydroxybutyrate transport in rat erythrocytes and thymocytes. Biochim Biophys Acta 508(3):525–538

    Article  CAS  PubMed  Google Scholar 

  16. Luiken JJ, Coort SL, Willems J, Coumans WA, Bonen A, van der Vusse GJ, Glatz JF (2003) Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 52(7):1627–1634

    Article  CAS  PubMed  Google Scholar 

  17. Klip A, Schertzer JD, Bilan PJ, Thong F, Antonescu C (2009) Regulation of glucose transporter 4 traffic by energy deprivation from mitochondrial compromise. Acta Physiol (Oxf) 196(1):27–35. https://doi.org/10.1111/j.1748-1716.2009.01974.x

    Article  CAS  Google Scholar 

  18. Abbud W, Habinowski S, Zhang JZ, Kendrew J, Elkairi FS, Kemp BE, Witters LA, Ismail-Beigi F (2000) Stimulation of AMP-activated protein kinase (AMPK) is associated with enhancement of Glut1-mediated glucose transport. Arch Biochem Biophys 380(2):347–352. https://doi.org/10.1006/abbi.2000.1935

    Article  CAS  PubMed  Google Scholar 

  19. Abel ED (2004) Glucose transport in the heart. Front Biosci 9:201–215

    Article  CAS  PubMed  Google Scholar 

  20. Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93(3):993–1017. https://doi.org/10.1152/physrev.00038.2012

    Article  CAS  PubMed  Google Scholar 

  21. Jain SS, Chabowski A, Snook LA, Schwenk RW, Glatz JF, Luiken JJ, Bonen A (2009) Additive effects of insulin and muscle contraction on fatty acid transport and fatty acid transporters, FAT/CD36, FABPpm, FATP1, 4 and 6. FEBS Lett 583(13):2294–2300. https://doi.org/10.1016/j.febslet.2009.06.020

    Article  CAS  PubMed  Google Scholar 

  22. Habets DD (2008) Thesis: “Regulation of cardiac long-chain fatty acid and glucose utilization. Studies with cardiomyocytes from genetically manipulated mice” Thesis Chapter 5: AICAR stimulates long-chain fatty acid uptake and oxidation in mouse heart independent of CD36

    Google Scholar 

  23. Thong FS, Bilan PJ, Klip A (2007) The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating GLUT4 traffic. Diabetes 56(2):414–423. https://doi.org/10.2337/db06-0900

    Article  CAS  PubMed  Google Scholar 

  24. Abbott MJ, Edelman AM, Turcotte LP (2009) CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle. Am J Physiol Regul Integr Comp Physiol 297(6):R1724–R1732. https://doi.org/10.1152/ajpregu.00179.2009

    Article  PubMed  Google Scholar 

  25. Habets DD, Coumans WA, El Hasnaoui M, Zarrinpashneh E, Bertrand L, Viollet B, Kiens B, Jensen TE, Richter EA, Bonen A, Glatz JF, Luiken JJ (2009) Crucial role for LKB1 to AMPKalpha2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes. Biochim Biophys Acta 1791(3):212–219. https://doi.org/10.1016/j.bbalip.2008.12.009

    Article  CAS  PubMed  Google Scholar 

  26. Samovski D, Su X, Xu Y, Abumrad NA, Stahl PD (2012) Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J Lipid Res 53(4):709–717. https://doi.org/10.1194/jlr.M023424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luiken JJ, Glatz JF, Neumann D (2015) Cardiac contraction-induced GLUT4 translocation requires dual signaling input. Trends Endocrinol Metab 26(8):404–410. https://doi.org/10.1016/j.tem.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  28. Luiken JJ, Coort SL, Koonen DP, van der Horst DJ, Bonen A, Zorzano A, Glatz JF (2004) Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch 448(1):1–15. https://doi.org/10.1007/s00424-003-1199-4

    Article  CAS  PubMed  Google Scholar 

  29. Yamaguchi S, Katahira H, Ozawa S, Nakamichi Y, Tanaka T, Shimoyama T, Takahashi K, Yoshimoto K, Imaizumi MO, Nagamatsu S, Ishida H (2005) Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 289(4):E643–E649. https://doi.org/10.1152/ajpendo.00456.2004

    Article  CAS  PubMed  Google Scholar 

  30. Weisiger RA, Fitz JG, Scharschmidt BF (1989) Hepatic oleate uptake. Electrochemical driving forces in intact rat liver. J Clin Invest 83(2):411–420. https://doi.org/10.1172/JCI113899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park KS, Jo I, Pak K, Bae SW, Rhim H, Suh SH, Park J, Zhu H, So I, Kim KW (2002) FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells. Pflugers Arch 443(3):344–352. https://doi.org/10.1007/s004240100703

    Article  CAS  PubMed  Google Scholar 

  32. Liu X, Chhipa RR, Pooya S, Wortman M, Yachyshin S, Chow LM, Kumar A, Zhou X, Sun Y, Quinn B, McPherson C, Warnick RE, Kendler A, Giri S, Poels J, Norga K, Viollet B, Grabowski GA, Dasgupta B (2014) Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc Natl Acad Sci U S A 111(4):E435–E444. https://doi.org/10.1073/pnas.1311121111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bonen A, Han XX, Habets DD, Febbraio M, Glatz JF, Luiken JJ (2007) A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism. Am J Physiol Endocrinol Metab 292(6):E1740–E1749. https://doi.org/10.1152/ajpendo.00579.2006

    Article  CAS  PubMed  Google Scholar 

  34. Russell RR 3rd, Bergeron R, Shulman GI, Young LH (1999) Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Phys 277(2 Pt 2):H643–H649

    CAS  Google Scholar 

  35. Angin Y, Schwenk RW, Nergiz-Unal R, Hoebers N, Heemskerk JW, Kuijpers MJ, Coumans WA, van Zandvoort MA, Bonen A, Neumann D, Glatz JF, Luiken JJ (2014) Calcium signaling recruits substrate transporters GLUT4 and CD36 to the sarcolemma without increasing cardiac substrate uptake. Am J Physiol Endocrinol Metab 307(2):E225–E236. https://doi.org/10.1152/ajpendo.00655.2013

    Article  CAS  PubMed  Google Scholar 

  36. Dirkx E, Schwenk RW, Coumans WA, Hoebers N, Angin Y, Viollet B, Bonen A, van Eys GJ, Glatz JF, Luiken JJ (2012) Protein kinase D1 is essential for contraction-induced glucose uptake but is not involved in fatty acid uptake into cardiomyocytes. J Biol Chem 287(8):5871–5881. https://doi.org/10.1074/jbc.M111.281881

    Article  CAS  PubMed  Google Scholar 

  37. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108(8):1167–1174. https://doi.org/10.1172/JCI13505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson JM, Ljunqvist O, Efendic S, Moller DE, Thorell A, Goodyear LJ (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51(7):2074–2081

    Article  CAS  PubMed  Google Scholar 

  39. Yang J, Holman GD (2006) Long-term metformin treatment stimulates cardiomyocyte glucose transport through an AMP-activated protein kinase-dependent reduction in GLUT4 endocytosis. Endocrinology 147(6):2728–2736. https://doi.org/10.1210/en.2005-1433

    Article  CAS  PubMed  Google Scholar 

  40. Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3(6):403–416. https://doi.org/10.1016/j.cmet.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  41. Lai YC, Kviklyte S, Vertommen D, Lantier L, Foretz M, Viollet B, Hallen S, Rider MH (2014) A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators. Biochem J 460(3):363–375. https://doi.org/10.1042/BJ20131673

    Article  CAS  PubMed  Google Scholar 

  42. Rajamohan F, Reyes AR, Frisbie RK, Hoth LR, Sahasrabudhe P, Magyar R, Landro JA, Withka JM, Caspers NL, Calabrese MF, Ward J, Kurumbail RG (2016) Probing the enzyme kinetics, allosteric modulation and activation of alpha1- and alpha2-subunit-containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators. Biochem J 473(5):581–592. https://doi.org/10.1042/BJ20151051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, Giordanetto F, Martin SR, Carling D, Gamblin SJ (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:3017. https://doi.org/10.1038/ncomms4017

    PubMed  PubMed Central  Google Scholar 

  44. Momken I, Chabowski A, Dirkx E, Nabben M, Jain SS, McFarlan JT, Glatz JF, Luiken JJ, Bonen A (2017) A new leptin-mediated mechanism for stimulating fatty acid oxidation: a pivotal role for sarcolemmal FAT/CD36. Biochem J 474(1):149–162. https://doi.org/10.1042/BCJ20160804

    Article  CAS  PubMed  Google Scholar 

  45. Palanivel R, Eguchi M, Shuralyova I, Coe I, Sweeney G (2006) Distinct effects of short- and long-term leptin treatment on glucose and fatty acid uptake and metabolism in HL-1 cardiomyocytes. Metabolism 55(8):1067–1075. https://doi.org/10.1016/j.metabol.2006.03.020

    Article  CAS  PubMed  Google Scholar 

  46. Berti L, Gammeltoft S (1999) Leptin stimulates glucose uptake in C2C12 muscle cells by activation of ERK2. Mol Cell Endocrinol 157(1–2):121–130

    Article  CAS  PubMed  Google Scholar 

  47. Mu J, Brozinick JT Jr, Valladares O, Bucan M, Birnbaum MJ (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 7(5):1085–1094

    Article  CAS  PubMed  Google Scholar 

  48. Samari HR, Seglen PO (1998) Inhibition of hepatocytic autophagy by adenosine, aminoimidazole-4-carboxamide riboside, and N6-mercaptopurine riboside. Evidence for involvement of amp-activated protein kinase. J Biol Chem 273(37):23758–23763

    Article  CAS  PubMed  Google Scholar 

  49. Musi N, Hayashi T, Fujii N, Hirshman MF, Witters LA, Goodyear LJ (2001) AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol Endocrinol Metab 280(5):E677–E684

    Article  CAS  PubMed  Google Scholar 

  50. Henin N, Vincent MF, Van den Berghe G (1996) Stimulation of rat liver AMP-activated protein kinase by AMP analogues. Biochim Biophys Acta 1290(2):197–203

    Article  PubMed  Google Scholar 

  51. Iwatsubo K, Bravo C, Uechi M, Baljinnyam E, Nakamura T, Umemura M, Lai L, Gao S, Yan L, Zhao X, Park M, Qiu H, Okumura S, Iwatsubo M, Vatner DE, Vatner SF, Ishikawa Y (2012) Prevention of heart failure in mice by an antiviral agent that inhibits type 5 cardiac adenylyl cyclase. Am J Physiol Heart Circ Physiol 302(12):H2622–H2628. https://doi.org/10.1152/ajpheart.00190.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Niu W, Bilan PJ, Ishikura S, Schertzer JD, Contreras-Ferrat A, Fu Z, Liu J, Boguslavsky S, Foley KP, Liu Z, Li J, Chu G, Panakkezhum T, Lopaschuk GD, Lavandero S, Yao Z, Klip A (2010) Contraction-related stimuli regulate GLUT4 traffic in C2C12-GLUT4myc skeletal muscle cells. Am J Physiol Endocrinol Metab 298(5):E1058–E1071. https://doi.org/10.1152/ajpendo.00773.2009

    Article  CAS  PubMed  Google Scholar 

  53. Merlin J, Evans BA, Csikasz RI, Bengtsson T, Summers RJ, Hutchinson DS (2010) The M3-muscarinic acetylcholine receptor stimulates glucose uptake in L6 skeletal muscle cells by a CaMKK-AMPK-dependent mechanism. Cell Signal 22(7):1104–1113. https://doi.org/10.1016/j.cellsig.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  54. Vogt J, Traynor R, Sapkota GP (2011) The specificities of small molecule inhibitors of the TGFss and BMP pathways. Cell Signal 23(11):1831–1842. https://doi.org/10.1016/j.cellsig.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  55. Tokumitsu H, Inuzuka H, Ishikawa Y, Ikeda M, Saji I, Kobayashi R (2002) STO-609, a specific inhibitor of the Ca(2+)/calmodulin-dependent protein kinase kinase. J Biol Chem 277(18):15813–15818. https://doi.org/10.1074/jbc.M201075200

    Article  CAS  PubMed  Google Scholar 

  56. Witczak CA, Sharoff CG, Goodyear LJ (2008) AMP-activated protein kinase in skeletal muscle: from structure and localization to its role as a master regulator of cellular metabolism. Cell Mol Life Sci 65(23):3737–3755. https://doi.org/10.1007/s00018-008-8244-6

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost J. F. P. Luiken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Luiken, J.J.F.P., Neumann, D., Glatz, J.F.C., Coumans, W.A., Chanda, D., Nabben, M. (2018). Assessment of AMPK-Stimulated Cellular Long-Chain Fatty Acid and Glucose Uptake. In: Neumann, D., Viollet, B. (eds) AMPK. Methods in Molecular Biology, vol 1732. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7598-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7598-3_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7597-6

  • Online ISBN: 978-1-4939-7598-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics