Skip to main content

Visualizing AMPK Drug Binding Sites Through Crystallization of Full-Length Phosphorylated α2β1γ1 Heterotrimer

  • Protocol
  • First Online:
AMPK

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1732))

Abstract

Here, we describe the crystallization protocol for AMPK, including protein production and purification. AMPK can be readily crystallized in the presence of PEG to give diffracting crystals to a resolution of between 2.5 and 3.5 Å using synchrotron radiation. This method allows for visualization of drugs or small molecules that bind to the ADaM site, CBS sites, ATP binding site, and the newly identified C2 binding sites in the γ-subunit via co-crystallization with phosphorylated AMPK (pT172) α2β1γ1 isoform or α2/1β1γ1 chimera. Drugs with binding affinities above 500 nM fail to co-crystallize with AMPK using these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108(8):1167–1174. https://doi.org/10.1172/JCI13505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3(6):403–416. https://doi.org/10.1016/j.cmet.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  3. Polekhina G, Gupta A, van Denderen BJ, Feil SC, Kemp BE, Stapleton D, Parker MW (2005) Structural basis for glycogen recognition by AMP-activated protein kinase. Structure 13(10):1453–1462. https://doi.org/10.1016/j.str.2005.07.008

    Article  CAS  PubMed  Google Scholar 

  4. Nayak V, Zhao K, Wyce A, Schwartz MF, Lo WS, Berger SL, Marmorstein R (2006) Structure and dimerization of the kinase domain from yeast Snf1, a member of the Snf1/AMPK protein family. Structure 14(3):477–485. https://doi.org/10.1016/j.str.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  5. Townley R, Shapiro L (2007) Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase. Science 315(5819):1726–1729. https://doi.org/10.1126/science.1137503

    Article  CAS  PubMed  Google Scholar 

  6. Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, Giordanetto F, Martin SR, Carling D, Gamblin SJ (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:3017. https://doi.org/10.1038/ncomms4017

    PubMed  PubMed Central  Google Scholar 

  7. Li X, Wang L, Zhou XE, Ke J, de Waal PW, Gu X, Tan MHE, Wang D, Wu D, Xu HE, Melcher K (2015) Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res 25(3):398. https://doi.org/10.1038/cr.2015.27

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kurumbail RG, Calabrese MF (2016) Structure and regulation of AMPK. EXS 107:3–22. https://doi.org/10.1007/978-3-319-43589-3_1

    CAS  PubMed  Google Scholar 

  9. Langendorf CG, Kemp BE (2015) Choreography of AMPK activation. Cell Res 25(1):5–6. https://doi.org/10.1038/cr.2014.163

    Article  CAS  PubMed  Google Scholar 

  10. Langendorf CG, Ngoei KR, Scott JW, Ling NX, Issa SM, Gorman MA, Parker MW, Sakamoto K, Oakhill JS, Kemp BE (2016) Structural basis of allosteric and synergistic activation of AMPK by furan-2-phosphonic derivative C2 binding. Nat Commun 7:10912. https://doi.org/10.1038/ncomms10912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Calabrese MF, Rajamohan F, Harris MS, Caspers NL, Magyar R, Withka JM, Wang H, Borzilleri KA, Sahasrabudhe PV, Hoth LR, Geoghegan KF, Han S, Brown J, Subashi TA, Reyes AR, Frisbie RK, Ward J, Miller RA, Landro JA, Londregan AT, Carpino PA, Cabral S, Smith AC, Conn EL, Cameron KO, Qiu X, Kurumbail RG (2014) Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms. Structure 22(8):1161–1172. https://doi.org/10.1016/j.str.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  12. Hunter RW, Foretz M, Bultot L, Fullerton MD, Deak M, Ross FA, Hawley SA, Shpiro N, Viollet B, Barron D, Kemp BE, Steinberg GR, Hardie DG, Sakamoto K (2014) Mechanism of action of compound-13: an alpha1-selective small molecule activator of AMPK. Chem Biol 21(7):866–879. https://doi.org/10.1016/j.chembiol.2014.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

These authors are supported by grants from the National Health and Medical Research Council, the Australian Research Council, the Victorian Government Operational Infrastructure Support Scheme, and the Jack Brockhoff Foundation (JBF-4206, 2016), and C.G.L. is an E.H. Flack Research fellow. B.E.K. and J.S.O. are NHMRC and ARC Research fellows, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Langendorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Langendorf, C.G., Oakhill, J.S., Kemp, B.E. (2018). Visualizing AMPK Drug Binding Sites Through Crystallization of Full-Length Phosphorylated α2β1γ1 Heterotrimer. In: Neumann, D., Viollet, B. (eds) AMPK. Methods in Molecular Biology, vol 1732. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7598-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7598-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7597-6

  • Online ISBN: 978-1-4939-7598-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics