Skip to main content

Determination of Aconitase Activity: A Substrate of the Mitochondrial Lon Protease

  • Protocol
  • First Online:
Proteases and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1731))

Abstract

Mitochondrial aconitase is a reversible enzyme that catalyzes the conversion of citrate to isocitrate in the tricarboxylic acid cycle. Mitochondrial aconitase is very sensitive to oxidative inactivation and can aggregate and accumulate in the mitochondrial matrix causing mitochondrial dysfunction. Lon protease, one of the major quality control proteases in mitochondria, degrades oxidized aconitase maintaining mitochondrial homeostasis. This chapter describes a step-by-step protocol for a simple and reliable measurement of mitochondrial aconitase, as well as citrate synthase activity, using isolated mitochondria from cells. The protocol is simple and fast, and it is optimized for a 96-well plate using a microplate reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quiros PM, Langer T, Lopez-Otin C (2015) New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol 16(6):345–359. https://doi.org/10.1038/nrm3984

    Article  CAS  PubMed  Google Scholar 

  2. Pinti M, Gibellini L, Liu Y et al (2015) Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell Mol Life Sci 72(24):4807–4824. https://doi.org/10.1007/s00018-015-2039-3

    Article  CAS  PubMed  Google Scholar 

  3. Bota DA, Davies KJ (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4(9):674–680. https://doi.org/10.1038/ncb836

    Article  CAS  PubMed  Google Scholar 

  4. Fukuda R, Zhang H, Kim JW et al (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129(1):111–122. https://doi.org/10.1016/j.cell.2007.01.047

    Article  CAS  PubMed  Google Scholar 

  5. Granot Z, Kobiler O, Melamed-Book N et al (2007) Turnover of mitochondrial steroidogenic acute regulatory (StAR) protein by Lon protease: the unexpected effect of proteasome inhibitors. Mol Endocrinol 21(9):2164–2177. https://doi.org/10.1210/me.2005-0458

    Article  CAS  PubMed  Google Scholar 

  6. Matsushima Y, Goto Y, Kaguni LS (2010) Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM). Proc Natl Acad Sci U S A 107(43):18410–18415. https://doi.org/10.1073/pnas.1008924107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tian Q, Li T, Hou W et al (2011) Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells. J Biol Chem 286(30):26424–26430. https://doi.org/10.1074/jbc.M110.215772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kita K, Suzuki T, Ochi T (2012) Diphenylarsinic acid promotes degradation of glutaminase C by mitochondrial Lon protease. J Biol Chem 287(22):18163–18172. https://doi.org/10.1074/jbc.M112.362699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Teng H, Wu B, Zhao K et al (2013) Oxygen-sensitive mitochondrial accumulation of cystathionine beta-synthase mediated by Lon protease. Proc Natl Acad Sci U S A 110(31):12679–12684. https://doi.org/10.1073/pnas.1308487110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bezawork-Geleta A, Saiyed T, Dougan DA et al (2014) Mitochondrial matrix proteostasis is linked to hereditary paraganglioma: LON-mediated turnover of the human flavinylation factor SDH5 is regulated by its interaction with SDHA. FASEB J 28(4):1794–1804. https://doi.org/10.1096/fj.13-242420

    Article  CAS  PubMed  Google Scholar 

  11. Lu B, Lee J, Nie X et al (2013) Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell 49(1):121–132. https://doi.org/10.1016/j.molcel.2012.10.023

    Article  CAS  PubMed  Google Scholar 

  12. Lu B, Liu T, Crosby JA et al (2003) The ATP-dependent Lon protease of Mus musculus is a DNA-binding protein that is functionally conserved between yeast and mammals. Gene 306:45–55. https://doi.org/10.1016/S0378-1119(03)00403-7

  13. Erjavec N, Bayot A, Gareil M et al (2013) Deletion of the mitochondrial Pim1/Lon protease in yeast results in accelerated aging and impairment of the proteasome. Free Radic Biol Med 56:9–16. https://doi.org/10.1016/j.freeradbiomed.2012.11.019

    Article  CAS  PubMed  Google Scholar 

  14. Bota DA, Ngo JK, Davies KJ (2005) Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radic Biol Med 38(5):665–677. https://doi.org/10.1016/j.freeradbiomed.2004.11.017

    Article  CAS  PubMed  Google Scholar 

  15. Quiros PM, Espanol Y, Acin-Perez R et al (2014) ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep 8(2):542–556. https://doi.org/10.1016/j.celrep.2014.06.018

    Article  CAS  PubMed  Google Scholar 

  16. Luce K, Osiewacz HD (2009) Increasing organismal healthspan by enhancing mitochondrial protein quality control. Nat Cell Biol 11(7):852–858. https://doi.org/10.1038/ncb1893

    Article  CAS  PubMed  Google Scholar 

  17. Ngo JK, Pomatto LC, Davies KJ (2013) Upregulation of the mitochondrial Lon protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox Biol 1(1):258–264. https://doi.org/10.1016/j.redox.2013.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Strauss KA, Jinks RN, Puffenberger EG et al (2015) CODAS syndrome is associated with mutations of LONP1, encoding mitochondrial AAA(+) Lon protease. Am J Hum Genet 96(1):121–135. https://doi.org/10.1016/j.ajhg.2014.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dikoglu E, Alfaiz A, Gorna M et al (2015) Mutations in LONP1, a mitochondrial matrix protease, cause CODAS syndrome. Am J Med Genet A 167(7):1501–1509. https://doi.org/10.1002/ajmg.a.37029

    Article  CAS  PubMed  Google Scholar 

  20. Quirós PM, Bárcena C, López-Otín C (2014) Lon protease: a key enzyme controlling mitochondrial bioenergetics in cancer. Mol Cell Oncol 1(4):e968505. https://doi.org/10.4161/23723548.2014.968505

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bota DA, Davies KJ (2016) Mitochondrial Lon protease in human disease and aging: including an etiologic classification of Lon-related diseases and disorders. Free Radic Biol Med 100:188–198. https://doi.org/10.1016/j.freeradbiomed.2016.06.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheng CW, Kuo CY, Fan CC et al (2013) Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species. Cell Death Dis 4:e681. https://doi.org/10.1038/cddis.2013.204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gibellini L, Pinti M, Boraldi F et al (2014) Silencing of mitochondrial Lon protease deeply impairs mitochondrial proteome and function in colon cancer cells. FASEB J 28(12):5122–5135. https://doi.org/10.1096/fj.14-255869

    Article  CAS  PubMed  Google Scholar 

  24. Bernstein SH, Venkatesh S, Li M et al (2012) The mitochondrial ATP-dependent Lon protease: a novel target in lymphoma death mediated by the synthetic triterpenoid CDDO and its derivatives. Blood 119(14):3321–3329. https://doi.org/10.1182/blood-2011-02-340075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gibellini L, Pinti M, Bartolomeo R et al (2015) Inhibition of Lon protease by triterpenoids alters mitochondria and is associated to cell death in human cancer cells. Oncotarget 6(28):25466–25483. https://doi.org/10.18632/oncotarget.4510

  26. Liu Y, Lan L, Huang K et al (2014) Inhibition of Lon blocks cell proliferation, enhances chemosensitivity by promoting apoptosis and decreases cellular bioenergetics of bladder cancer: potential roles of Lon as a prognostic marker and therapeutic target in baldder cancer. Oncotarget 5(22):11209–11224. https://doi.org/10.18632/oncotarget.2026

  27. Nie X, Li M, Lu B et al (2013) Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics. PLoS One 8(11):e81084. https://doi.org/10.1371/journal.pone.0081084

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kao TY, Chiu YC, Fang WC et al (2015) Mitochondrial Lon regulates apoptosis through the association with Hsp60-mtHsp70 complex. Cell Death Dis 6:e1642. https://doi.org/10.1038/cddis.2015.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. Quirós .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Quirós, P.M. (2018). Determination of Aconitase Activity: A Substrate of the Mitochondrial Lon Protease. In: Cal, S., Obaya, A. (eds) Proteases and Cancer. Methods in Molecular Biology, vol 1731. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7595-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7595-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7594-5

  • Online ISBN: 978-1-4939-7595-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics