Skip to main content

3D Image Analysis of the Microvasculature in Healthy and Diseased Tissues

  • Protocol
  • First Online:
Proteases and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1731))

Abstract

The vasculature ensures optimal delivery of nutrients and oxygen throughout the body. The ability to respond to changing tissue demands requires constant reshaping of the vascular network through modulation of its density, diameter, or patterning. These processes are especially prominent after tissue damage or in tumors. The matrix metalloproteinase (MMP) family of endopeptidases are key contributors to vascular remodeling, able to cleave all extracellular matrix components and also soluble factors and membrane receptors. Observations recorded over several decades have established that the vasculature changes in pathological contexts, and this has formed the basis for developing angiotherapies as a novel approach to treating disease. For example, inhibition of angiogenesis or normalization of the vasculature has been proposed as treatment for cancer and chronic inflammatory diseases. In contrast, boosting angiogenesis may be helpful in ischemic conditions such as myocardial infarction and in regenerative medicine. Classical histological methods for the analysis of tissue vasculature have relied on thin sections that do not capture the complex 3D structure of the vascular network. Given the importance of understanding disease-associated vascular changes for the development of rational angiotherapeutic interventions, we present a protocol for thick section-based 3D image analysis of vasculature structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenblatt M, Shubi P (1968) Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. J Natl Cancer Inst 41(1):111–124

    CAS  PubMed  Google Scholar 

  2. Parangi S, O'Reilly M, Christofori G et al (1996) Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci U S A 93(5):2002–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6 Suppl 16):15–18. https://doi.org/10.1053/sonc.2002.37263

    Article  CAS  PubMed  Google Scholar 

  4. Fakhrejahani E, Toi M (2014) Antiangiogenesis therapy for breast cancer: an update and perspectives from clinical trials. Jpn J Clin Oncol 44(3):197–207. https://doi.org/10.1093/jjco/hyt201

    Article  PubMed  PubMed Central  Google Scholar 

  5. Weis SM, Cheresh DA (2005) Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437(7058):497–504. https://doi.org/10.1038/nature03987

    Article  CAS  PubMed  Google Scholar 

  6. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153(3):198–205. https://doi.org/10.1016/j.jconrel.2011.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417–427. https://doi.org/10.1038/nrd3455

    Article  CAS  PubMed  Google Scholar 

  8. Wong PP, Demircioglu F, Ghazaly E et al (2015) Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread. Cancer Cell 27(1):123–137. https://doi.org/10.1016/j.ccell.2014.10.015

    Article  CAS  PubMed  Google Scholar 

  9. Madeddu P (2005) Therapeutic angiogenesis and vasculogenesis for tissue regeneration. Exp Physiol 90(3):315–326. https://doi.org/10.1113/expphysiol.2004.028571

    Article  CAS  PubMed  Google Scholar 

  10. Zhang H, van Olden C, Sweeney D et al (2014) Blood vessel repair and regeneration in the ischaemic heart. Open Heart 1(1):e000016. https://doi.org/10.1136/openhrt-2013-000016

    Article  PubMed  PubMed Central  Google Scholar 

  11. Porrello ER, Olson EN (2014) A neonatal blueprint for cardiac regeneration Stem Cell Res 13 (3 Pt B):556-570. doi:https://doi.org/10.1016/j.scr.2014.06.003

  12. Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9(2):267–285

    Article  CAS  PubMed  Google Scholar 

  13. Siefert SA, Sarkar R (2012) Matrix metalloproteinases in vascular physiology and disease. Vascular 20(4):210–216. https://doi.org/10.1258/vasc.2011.201202

    Article  PubMed  Google Scholar 

  14. Zhou Z, Apte SS, Soininen R et al (2000) Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A 97(8):4052–4057. https://doi.org/10.1073/pnas.060037197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Galvez BG, Genis L, Matias-Roman S et al (2005) Membrane type 1-matrix metalloproteinase is regulated by chemokines monocyte-chemoattractant protein-1/ccl2 and interleukin-8/CXCL8 in endothelial cells during angiogenesis. J Biol Chem 280(2):1292–1298. https://doi.org/10.1074/jbc.M408673200

    Article  CAS  PubMed  Google Scholar 

  16. Galvez BG, Matias-Roman S, Albar JP et al (2001) Membrane type 1-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling. J Biol Chem 276(40):37491–37500. https://doi.org/10.1074/jbc.M104094200

    Article  CAS  PubMed  Google Scholar 

  17. Koziol A, Gonzalo P, Mota A et al (2012) The protease MT1-MMP drives a combinatorial proteolytic program in activated endothelial cells. FASEB J 26(11):4481–4494. https://doi.org/10.1096/fj.12-205906

    Article  CAS  PubMed  Google Scholar 

  18. Sudhakar A, Sugimoto H, Yang C et al (2003) Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci U S A 100(8):4766–4771. https://doi.org/10.1073/pnas.0730882100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bergers G, Brekken R, McMahon G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744. https://doi.org/10.1038/35036374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mu D, Cambier S, Fjellbirkeland L et al (2002) The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol 157(3):493–507. https://doi.org/10.1083/jcb.200109100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Walchli T, Mateos JM, Weinman O et al (2015) Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain. Nat Protoc 10(1):53–74. https://doi.org/10.1038/nprot.2015.002

    Article  CAS  PubMed  Google Scholar 

  22. Cunha SI, Pardali E, Thorikay M et al (2010) Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med 207(1):85–100. https://doi.org/10.1084/jem.20091309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pitulescu ME, Schmidt I, Benedito R et al (2010) Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice. Nat Protoc 5(9):1518–1534. https://doi.org/10.1038/nprot.2010.113

    Article  CAS  PubMed  Google Scholar 

  24. Tual-Chalot S, Allinson KR, Fruttiger M et al (2013) Whole mount immunofluorescent staining of the neonatal mouse retina to investigate angiogenesis in vivo. J Vis Exp 77:e50546. https://doi.org/10.3791/50546

    Google Scholar 

  25. Walls JR, Coultas L, Rossant J et al (2008) Three-dimensional analysis of vascular development in the mouse embryo. PLoS One 3(8):e2853. https://doi.org/10.1371/journal.pone.0002853

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jester JV, Ho-Chang J (2003) Modulation of cultured corneal keratocyte phenotype by growth factors/cytokines control in vitro contractility and extracellular matrix contraction. Exp Eye Res 77(5):581–592

    Article  CAS  PubMed  Google Scholar 

  27. Richardson DS, Lichtman JW (2015) Clarifying tissue clearing. Cell 162(2):246–257. https://doi.org/10.1016/j.cell.2015.06.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gkontra P, Żak MM, Norton K-A et al (2015) A 3D fractal-based approach towards understanding changes in the infarcted heart microvasculature. Springer 9351:173–180. https://doi.org/10.1007/978-3-319-24574-4_21

    Google Scholar 

Download references

Acknowledgments

We thank Simon Bartlett for English editing. This work was supported by grant SAF2014-52050R from the Spanish Ministry of Economy and Competitiveness. A.S-E. is funded by a fellowship from Obra Social “La Caixa.” The CNIC is supported by the Ministry of Economy, Industry and Competitiveness and the Pro-CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia G. Arroyo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sahún-Español, Á., Clemente, C., Arroyo, A.G. (2018). 3D Image Analysis of the Microvasculature in Healthy and Diseased Tissues. In: Cal, S., Obaya, A. (eds) Proteases and Cancer. Methods in Molecular Biology, vol 1731. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7595-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7595-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7594-5

  • Online ISBN: 978-1-4939-7595-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics