Skip to main content

Evaluation of Tumor Vasculature Using a Syngeneic Tumor Model in Wild-Type and Genetically Modified Mice

  • Protocol
  • First Online:
  • 1798 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1731))

Abstract

The relevance of tumor vasculature has been extensively recognized, and it is still the focus of numerous lines of research for basic, translational, and clinical scientists. Indeed, the knowledge of some of its regulatory mechanisms has provoked the generation of ongoing cancer therapies. Within the context of the tumor microenvironment, the information that the analysis of the vasculature provides is very valuable, and it might reveal not just its quality and the response against a specific therapy but also its close relationship with neighboring stromal and tumor players.

Studies during last decades already supported the contribution of extracellular proteases in neovascularization events, including ADAMTS. However, deeper analyses are still required to better understand the modulation of their proteolytic activity in the tumor microenvironment. Future studies will clearly benefit from existing and ongoing genetically modified mouse models.

Here we emphasize the use of syngeneic models to study the vasculature during tumor progression, supported by their intact immunocompetent capacities and also by the range of possibilities to play with engineered mice and with modified tumor cells. Although various high-tech and sophisticated approaches have already been reported to evaluate tumor neovascularization, here we describe a simple and easily reproduced methodology based in the immunofluorescence detection of vascular-specific molecules. A final in silico analysis guarantees an unbiased quantification of tumor vasculature under different conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. https://doi.org/10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. De Sousa E, Melo F, Vermeulen L et al (2013) Cancer heterogeneity – a multifaceted view. EMBO Rep 14(8):686–695. https://doi.org/10.1038/embor.2013.92

    Article  Google Scholar 

  3. Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26:605–622. https://doi.org/10.1016/j.ccell.2014.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5(9):785–799. https://doi.org/10.1038/nrd2092

    Article  CAS  PubMed  Google Scholar 

  5. Handsley MM, Edwards DR (2005) Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer 115(6):849–860. https://doi.org/10.1002/ijc.20945

    Article  CAS  PubMed  Google Scholar 

  6. Lu P, Takai K, Weaver VM et al (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:a005058. https://doi.org/10.1101/cshperspect.a005058

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bix G, Iozzo RV (2005) Matrix revolutions: “tails” of basement-membrane components with angiostatic functions. Trends Cell Biol 15:52–60. https://doi.org/10.1016/j.tcb.2004.11.008

    Article  CAS  PubMed  Google Scholar 

  8. Rodríguez-Manzaneque JC, Fernández-Rodríguez R, Rodríguez-Baena FJ et al (2015) ADAMTS proteases in vascular biology. Matrix Biol 44–46:38–45. https://doi.org/10.1016/j.matbio.2015.02.004

    Article  PubMed  Google Scholar 

  9. Reynolds LE, Watson AR, Baker M et al (2010) Tumour angiogenesis is reduced in the Tc1 mouse model of Down’s syndrome. Nature 465(7299):813–817. https://doi.org/10.1038/nature09106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martino-Echarri E, Fernández-Rodríguez R, Rodríguez-Baena FJ et al (2013) Contribution of ADAMTS1 as a tumor suppressor gene in human breast carcinoma. Linking its tumor inhibitory properties to its proteolytic activity on nidogen-1 and nidogen-2. Int J Cancer 133(10):2315–2324. https://doi.org/10.1002/ijc.28271

    Article  CAS  PubMed  Google Scholar 

  11. Casal C, Torres-Collado AX, Plaza-Calonge MCDC et al (2010) ADAMTS1 contributes to the acquisition of an endothelial-like phenotype in plastic tumor cells. Cancer Res 70(11):4676–4686. https://doi.org/10.1158/0008-5472.CAN-09-4197

    Article  CAS  PubMed  Google Scholar 

  12. Lu X, Wang Q, Hu G et al (2009) ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev 23(16):1882–1894. https://doi.org/10.1101/gad.1824809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ricciardelli C, Frewin KM, Tan IDA et al (2011) The ADAMTS1 protease gene is required for mammary tumor growth and metastasis. Am J Pathol 179(6):3075–3085. https://doi.org/10.1016/j.ajpath.2011.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rocks N, Paulissen G, Quesada-Calvo F et al (2008) ADAMTS-1 metalloproteinase promotes tumor development through the induction of a stromal reaction in vivo. Cancer Res 68(22):9541–9550. https://doi.org/10.1158/0008-5472.CAN-08-0548

    Article  CAS  PubMed  Google Scholar 

  15. Fernández-Rodríguez R, Rodríguez-Baena FJ, Martino-Echarri E et al (2016) Stroma-derived but not tumor ADAMTS1 is a main driver of tumor growth and metastasis. Oncotarget 7(23):34507–34519. 10.18632/oncotarget.8922

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wieczorek E, Jablonska E, Wasowicz W et al (2015) Matrix metalloproteinases and genetic mouse models in cancer research: a mini-review. Tumor Biol 36(1):163–175. https://doi.org/10.1007/s13277-014-2747-6

    Article  CAS  Google Scholar 

  17. Poste G, Doll J, Hart IR et al (1980) In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties. Cancer Res 40(5):1636–1644

    CAS  PubMed  Google Scholar 

  18. Bertram JSJ, Janik PP (1980) Establishment of a cloned line of Lewis lung carcinoma cells adapted to cell culture. Cancer Lett 11(1):63–73. https://doi.org/10.1016/0304-3835(80)90130-5

    Article  CAS  PubMed  Google Scholar 

  19. Simons M, Alitalo K, Annex BH et al (2015) State-of-the-art methods for evaluation of angiogenesis and tissue vascularization: a scientific statement from the American Heart Association. Circ Res 116(11):e99–e132. https://doi.org/10.1161/RES.0000000000000054

    Article  CAS  PubMed  Google Scholar 

  20. Vakoc BJ, Lanning RM, Tyrrell JA et al (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15(10):1219–1223. https://doi.org/10.1038/nm.1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Missbach-Guentner J, Hunia J, Alves F (2011) Tumor blood vessel visualization. Int J Dev Biol 55:535–546. https://doi.org/10.1387/ijdb.103229jm

    Article  CAS  PubMed  Google Scholar 

  22. Robertson RT, Levine ST, Haynes SM et al (2015) Use of labeled tomato lectin for imaging vasculature structures. Histochem Cell Biol 143(2):225–234. https://doi.org/10.1007/s00418-014-1301-3

    Article  CAS  PubMed  Google Scholar 

  23. Rodriguez-Manzaneque JC, Lane TF, Ortega MA et al (2001) Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A 98(22):12485–12490. https://doi.org/10.1073/pnas.171460498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Work in the author’s laboratory has been supported by grants from the Ministerio de Economía y Competitividad and Instituto de Salud Carlos III from Spain and cofinanced by FEDER (PI13/00168 and PI16/00345 to JCRM). SRG is supported by a contract from Garantía Juvenil (PEJ-2014-A-38416-MINECO-FSE).

For data shown, all mice were kept in the Centro de Investigaciones Biomédicas-UGR Animal Facility under pathogen-free conditions and according to institutional guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Rodríguez-Manzaneque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rodríguez-Baena, F.J., Redondo-García, S., Plaza-Calonge, M., Fernández-Rodríguez, R., Rodríguez-Manzaneque, J.C. (2018). Evaluation of Tumor Vasculature Using a Syngeneic Tumor Model in Wild-Type and Genetically Modified Mice. In: Cal, S., Obaya, A. (eds) Proteases and Cancer. Methods in Molecular Biology, vol 1731. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7595-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7595-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7594-5

  • Online ISBN: 978-1-4939-7595-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics