Skip to main content

Beyond the Proteolytic Activity: Examining the Functional Relevance of the Ancillary Domains Using Tri-Dimensional (3D) Spheroid Invasion Assay

  • Protocol
  • First Online:
Proteases and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1731))

Abstract

In this chapter, we describe a straightforward protocol to generate multicellular tumor spheroids (MTSs) and evaluate the role of specific genes in regulating cell invasiveness in real-time and tridimensional (3D) matrices. This approach provides advantages over other conventional invasion assays by offering intimate cell–cell and cell–ECM contacts and by mimicking the pathophysiological characteristics observed in tumor microenvironments (e.g., microregional gradients in glucose and O2 concentrations and metabolic and proliferative tumor heterogeneity). We also provide an original and semiautomated approach to quantify MTS invasion using the freely available ImageJ software and plugins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fidler IJ (1978) Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res 38(9):2651–2660

    CAS  PubMed  Google Scholar 

  2. Bissell MJ, Hall HG, Parry G (1982) How does the extracellular matrix direct gene expression? J Theor Biol 99(1):31–68

    Article  CAS  PubMed  Google Scholar 

  3. Quail DF, Joyce JA (2014) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

    Article  Google Scholar 

  4. Costa ET, Barnabé GF, Li M et al (2015) Intratumoral heterogeneity of ADAM23 promotes tumor growth and metastasis through LGI4 and nitric oxide signals. Oncogene 34:1270–1279

    Article  CAS  PubMed  Google Scholar 

  5. Klemm F, Joyce JA (2015) Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol 25(4):4198–4213

    Article  Google Scholar 

  6. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. White JM (2003) ADAMs: modulators of cell–cell and cell–matrix interactions. Curr Opin Cell Biol 15(5):598–606

    Article  CAS  PubMed  Google Scholar 

  8. Takeda S, Takeya H, Iwanaga S (2012) Snake venom metalloproteinases: structure, function and relevance to the mammalian adam/adamts family proteins. Biochim Biophys Acta 1824(1):164–176

    Article  CAS  PubMed  Google Scholar 

  9. Kelwick R, Desanlis I, Wheelter GN et al (2015) The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol 16:113

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bode W, Gomis-Ruth F-X, Stockler W (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and met- turn) and topologies and should be grouped into a common family, the metzincins. FEBS Lett 331(1–2):134–140

    Article  CAS  PubMed  Google Scholar 

  11. Black RA, Rauch CT, Kozlosky CJ et al (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385(6618):729–733

    Article  CAS  PubMed  Google Scholar 

  12. Black RA, White JM (1998) ADAMs: focus on the protease domain. Curr Opin Cell Biol 10(5):654–659

    Article  CAS  PubMed  Google Scholar 

  13. Schlondorff J, Blobel CP (1999) Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J Cell Sci 112(Pt21):3603–3617

    CAS  PubMed  Google Scholar 

  14. Sagane K, Ohya Y, Hasegawa Y et al (1998) Metalloproteinase-like, disintegrin-like, cysteine-rich proteins MDC2 and MDC3: novel human cellular disintegrins highly expressed in the brain. Biochem J 334(Pt1):93–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mitchell KJ, Pinson KI, Kelly OG et al (2001) Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat Genet 28(3):241–249

    Article  CAS  PubMed  Google Scholar 

  16. Leighton PA, Mitchell KJ, Goodrich LV et al (2001) Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410(6825):174–179

    Article  CAS  PubMed  Google Scholar 

  17. Cal S, Freije JM, Lopez JM et al (2000) ADAM23/MDC3, a human disintegrin that promotes cell adhesion via interaction with the alphavbeta3 integrin through an RGD-independent mechanism. Mol Biol Cell 11(4):1457–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verbisck NV, Costa ET, Costa FF et al (2009) ADAM23 negatively modulates alpha(v)beta(3) integrin activation during metastasis. Cancer Res 69:5546–5552

    Article  CAS  PubMed  Google Scholar 

  19. Vinci M, Gowan S, Boxan F et al (2012) Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 10:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kunz-Schughart LA (1999) Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor. Cell Biol Int 23(3):157–161

    Article  CAS  PubMed  Google Scholar 

  21. Antoni D, Burckel H, Josset E et al (2015) Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 16(3):5517–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240(4849):177–184

    Article  CAS  PubMed  Google Scholar 

  23. Cukierman E, Pankov R, Stevens DR et al (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712

    Article  CAS  PubMed  Google Scholar 

  24. Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845

    Article  CAS  PubMed  Google Scholar 

  25. Souza GR, Molina JR, Raphael RM et al (2010) Three-dimensional tissue culture based on magnetic cell levitation. Nat Nanotechnol 5(4):291–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13:405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10(9):1886–1890

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from FAPESP (16/07463-4), Hospital Sírio-Libanês and Ludwig Institute for Cancer Research (LICR), São Paulo, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anamaria Aranha Camargo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Costa, E.T., Camargo, A.A. (2018). Beyond the Proteolytic Activity: Examining the Functional Relevance of the Ancillary Domains Using Tri-Dimensional (3D) Spheroid Invasion Assay. In: Cal, S., Obaya, A. (eds) Proteases and Cancer. Methods in Molecular Biology, vol 1731. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7595-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7595-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7594-5

  • Online ISBN: 978-1-4939-7595-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics