Skip to main content

Using the Whole Cell Patch Clamp Technique to Study the Effect of Nanoparticles in Hippocampal Neurons

  • Protocol
  • First Online:
Use of Nanoparticles in Neuroscience

Part of the book series: Neuromethods ((NM,volume 135))

  • 719 Accesses

Abstract

Several types of nanoparticles are considered toxic to the central nervous system. Patch-clamp is one of the most indispensable techniques in the study of neuroscience, especially in the field of neurophysiology. Here, we describe the experimental details using the whole-cell patch clamp mode in the study of nanoparticles in hippocampal slices of the rat, including the generation of giga-seals and cell clamped, recording of neuronal spontaneous discharge and neuronal evoked action potentials, recording of sodium current and potassium current, and recording of glutamatergic synaptic transmission as an example. Our goal is to provide readers with guidelines on how to take the advantage of patch-clamp in the study of nanoparticles in neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becheri A, Dürr M, Nostro PL, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10(4):679–689

    Article  CAS  Google Scholar 

  2. Kim G-S, Seo H-K, Godble V, Kim Y-S, Yang O-B, Shin H-S (2006) Electrophoretic deposition of titanate nanotubes from commercial titania nanoparticles: application to dye-sensitized solar cells. Electrochem Commun 8(6):961–966

    Article  CAS  Google Scholar 

  3. Das M, Saxena N, Dwivedi PD (2009) Emerging trends of nanoparticles application in food technology: safety paradigms. Nanotoxicology 3(1):10–18

    Article  CAS  Google Scholar 

  4. Ahlbom A, Bridges J, De SR, Hillert L, Juutilainen J, Mattsson MO, Neubauer G, Schüz J, Simko M, Bromen K (2008) Possible effects of electromagnetic fields (EMF) on human health--opinion of the scientific committee on emerging and newly identified health risks (SCENIHR). Toxicology 246(2–3):248–250

    PubMed  Google Scholar 

  5. Shuangyun L, Wenjuan G, Ying GH (2008) Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns 34(5):623–628

    Article  Google Scholar 

  6. Kim KJ, Sung WS, Bo KS, Moon SK, Choi JS, Kim JG, Dong GL (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22(2):235–242

    Article  CAS  PubMed  Google Scholar 

  7. Richardson RT, Thompson B, Moulton S, Newbold C, Lum MG, Cameron A, Wallace G, Kapsa R, Clark G, O’Leary S (2007) The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons. Biomaterials 28(3):513–523

    Article  CAS  PubMed  Google Scholar 

  8. Han YG, Xu J, Li ZG, Ren GG, Yang Z (2012) In vitro toxicity of multi-walled carbon nanotubes in C6 rat glioma cells. Neurotoxicology 33(5):1128–1134

    Article  CAS  PubMed  Google Scholar 

  9. Mohd Imran K, Akbar M, Govil P, Naqvi SAH, Chauhan LKS, Iqbal A (2011) Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33(5):1477–1488

    Google Scholar 

  10. Jing X, Xu P, Li Z, Jie H, Zhuo Y (2012) Oxidative stress and apoptosis induced by hydroxyapatite nanoparticles in C6 cells. J Biomed Mater Res A 100(3):738–745

    Google Scholar 

  11. Xu P, Jing X, Liu S, Zhuo Y (2012) Nano copper induced apoptosis in podocytes via increasing oxidative stress. J Hazard Mater 241–242(4):279–286

    Article  PubMed  Google Scholar 

  12. Bardi G, Malvindi MA, Gherardini L, Costa M, Pompa PP, Cingolani R, Pizzorusso T (2010) The biocompatibility of amino functionalized CdSe/ZnS quantum-dot-Doped SiO 2 nanoparticles with primary neural cells and their gene carrying performance. Biomaterials 31(25):6555–6566

    Article  CAS  PubMed  Google Scholar 

  13. Wu J, Sun J, Xue Y (2010) Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. Toxicol Lett 199(3):269–276

    Article  CAS  PubMed  Google Scholar 

  14. Liu S, Xu L, Zhang T, Ren G, Yang Z (2010) Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology 267(1):172–177

    Article  CAS  PubMed  Google Scholar 

  15. Xu LJ, Zhao JX, Zhang T, Ren GG, Yang Z (2009) In vitro study on influence of nano particles of CuO on CA1 pyramidal neurons of rat hippocampus potassium currents. Environ Toxicol 24(3):211–217

    Article  CAS  PubMed  Google Scholar 

  16. Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles – known and unknown health risks. J Nanobiotechnol 2(1):8

    Article  Google Scholar 

  17. Eva OR (2004) Manufactured nanomaterials (fullerene, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112(10):1058–1062

    Article  Google Scholar 

  18. Panyala NR, Pena-Mendez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6(3):117–129

    CAS  Google Scholar 

  19. Gao J, Zhang X, Yu M, Ren G, Yang Z (2015) Cognitive deficits induced by multi-walled carbon nanotubes via the autophagic pathway. Toxicology 337:21–29

    Article  CAS  PubMed  Google Scholar 

  20. Neher E, Sakmann B. (1975) Voltage-dependence of drug-induced conductance in frog neuromuscular junction. Proc Natl Acad Sci 72 (72):2140–2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Z, Zhang T, Ren G, Yang Z (2011) Nano-Ag inhibiting action potential independent glutamatergic synaptic transmission but increasing excitability in rat CA1 pyramidal neurons. Nanotoxicology 6(4):414–423

    Article  PubMed  Google Scholar 

  22. Chen T, Yang J, Zhang H, Ren G, Yang Z, Zhang T (2014) Multi-walled carbon nanotube inhibits CA1 glutamatergic synaptic transmission in rat's hippocampal slices. Toxicol Lett 229(3):423–429

    Article  CAS  PubMed  Google Scholar 

  23. Chen T, Yang J, Ren G, Yang Z, Zhang T (2013) Multi-walled carbon nanotube increases the excitability of hippocampal CA1 neurons through inhibition of potassium channels in rat's brain slices. Toxicol Lett 217(2):121–128

    Article  CAS  PubMed  Google Scholar 

  24. Liu Z, Liu S, Ren G, Tao Z, Zhuo Y (2011) Nano-CuO inhibited voltage-gated sodium current of hippocampal CA1 neurons via reactive oxygen species but independent from G-proteins pathway. J Appl Toxicol 31(5):439–445

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, X., Yang, Z. (2018). Using the Whole Cell Patch Clamp Technique to Study the Effect of Nanoparticles in Hippocampal Neurons. In: Santamaria, F., Peralta, X. (eds) Use of Nanoparticles in Neuroscience. Neuromethods, vol 135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7584-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7584-6_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7582-2

  • Online ISBN: 978-1-4939-7584-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics