Skip to main content

The Application of In Vivo Extracellular Recording Technique to Study the Biological Effects of Nanoparticles in Brain

  • Protocol
  • First Online:
Use of Nanoparticles in Neuroscience

Part of the book series: Neuromethods ((NM,volume 135))

  • 717 Accesses

Abstract

With the ability to penetrate the brain blood barrier (BBB), many types of nanoparticles have the chance to interact with the central nervous system, eliciting various and sometimes unexpected biological effects. Thus, understanding the effects of nanoparticles in central nervous system and the underlying mechanisms is critically important for the biomedical applications of engineered nanomaterials in the brain. Various techniques have been developed to study the electrophysiology of neurons and neuronal communication, providing an insight into the molecular mechanisms of learning and memory. Here, we describe the in vivo extracellular recording techniques that are used to record the long-term potential (LTP), short-term potential (paired-pulse facilitation, PPF), and the basal synaptic transmission (input–output curve, I/O curve) in dentate gyrus of hippocampus in the brain. Dentate gyrus plays a critical role in learning and memory. Thus, intrahippocampal infusion of nanoparticles in this area and the subsequent in vivo extracellular recording may help explore the function of nanoparticles in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(1):3

    Article  Google Scholar 

  2. Mout R, Moyano DF, Rana S, Rotello VM (2012) Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 41(7):2539–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42(2):530–547

    Article  CAS  PubMed  Google Scholar 

  4. Lee HJ, Park J, Yoon OJ et al (2011) Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat Nanotechnol 6(2):121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Park SY, Park J, Sim SH et al (2011) Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater 23(36):H263–H267

    Article  CAS  PubMed  Google Scholar 

  6. Steketee MB, Moysidis SN, Jin XL et al (2011) Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth. Proc Natl Acad Sci U S A 108(47):19042–19047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rutecki PA (1992) Neuronal excitability: voltage-dependent currents and synaptic transmission. J Clin Neurophysiol 9(2):195–211

    Article  CAS  PubMed  Google Scholar 

  8. Jeggo R, Zhao FY, Spanswick D (2014) Electrophysiological techniques for studying synaptic activity in vivo. Curr Protoc Pharmacol 64:11.11.1–11.11.17

    Article  Google Scholar 

  9. Takeuchi T, Duszkiewicz AJ, Morris RG (2014) The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond Ser B Biol Sci 369(1633):20130288

    Article  Google Scholar 

  10. Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9(1):65–75

    Article  CAS  PubMed  Google Scholar 

  11. Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jonas P, Lisman J (2014) Structure, function, and plasticity of hippocampal dentate gyrus microcircuits. Front Neural Circuits 8:107

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lysetskiy M, Foldy C, Soltesz I (2005) Long- and short-term plasticity at mossy fiber synapses on mossy cells in the rat dentate gyrus. Hippocampus 15(6):691–696

    Article  PubMed  Google Scholar 

  14. Jarrard LE (1993) On the role of the hippocampus in learning and memory in the rat. Behav Neural Biol 60(1):9–26

    Article  CAS  PubMed  Google Scholar 

  15. Bliss TV, Gardner-Medwin AR (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol 232(2):357–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shors TJ, Matzel LD (1997) Long-term potentiation: what’s learning got to do with it? Behav Brain Sci 20(4):597–614

    CAS  PubMed  Google Scholar 

  17. Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84(1):87–136

    Article  CAS  PubMed  Google Scholar 

  18. Tamura R, Nishida H, Eifuku S et al (2011) Short-term synaptic plasticity in the dentate gyrus of monkeys. PLoS One 6(5):e20006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manahan-Vaughan D, Schwegler H (2011) Strain-dependent variations in spatial learning and in hippocampal synaptic plasticity in the dentate gyrus of freely behaving rats. Front Behav Neurosci 5:7

    Article  PubMed  PubMed Central  Google Scholar 

  20. Navarrete M, Araque A (2011) Basal synaptic transmission: astrocytes rule! Cell 146(5):675–677

    Article  CAS  PubMed  Google Scholar 

  21. Kroto HW, Heath JR, Obrien SC et al (1985) C-60 – buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  22. Zhang QM, Yi JY, Bernholc J (1991) Structure and dynamics of solid C60. Phys Rev Lett 66:2633–2636

    Article  CAS  PubMed  Google Scholar 

  23. Marchesan S, Da Ros T, Spalluto G et al (2005) Anti-HIV properties of cationic fullerene derivatives. Bioorg Med Chem Lett 15(15):3615–3618

    Article  CAS  PubMed  Google Scholar 

  24. Lyon DY, Adams LK, Falkner JC et al (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40(14):4360–4366

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Q, Yang WJ, Man N et al (2009) Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal. Autophagy 5(8):1107–1117

    Article  CAS  PubMed  Google Scholar 

  26. Ryan JJ, Bateman HR, Stover A et al (2007) Fullerene nanomaterials inhibit the allergic response. J Immunol 179(1):665–672

    Article  CAS  PubMed  Google Scholar 

  27. Park KH, Chhowalla M, Iqbal Z et al (2003) Single-walled carbon nanotubes are a new class of ion channel blockers. J Biol Chem 278:50212–50216

    Article  CAS  PubMed  Google Scholar 

  28. Kubota R, Tahara M, Shimizu K et al (2011) Time-dependent variation in the biodistribution of C(6)(0) in rats determined by liquid chromatography-tandem mass spectrometry. Toxicol Lett 206(2):172–177

    Article  CAS  PubMed  Google Scholar 

  29. Moussa F, Pressac M, Genin E et al (1997) Quantitative analysis of C60 fullerene in blood and tissues by high-performance liquid chromatography with photodiode-array and mass spectrometric detection. J Chromatogr B Biomed Sci Appl 696(1):153–159

    Article  CAS  PubMed  Google Scholar 

  30. Jin H, Chen WQ, Tang XW et al (2000) Polyhydroxylated C(60), fullerenols, as glutamate receptor antagonists and neuroprotective agents. J Neurosci Res 62:600–607

    Article  CAS  PubMed  Google Scholar 

  31. Podolski IY, Podlubnaya ZA, Kosenko EA et al (2007) Effects of hydrated forms of C60 fullerene on amyloid 1-peptide fibrillization in vitro and performance of the cognitive task. J Nanosci Nanotechnol 7(4–5):1479–1485

    Article  CAS  PubMed  Google Scholar 

  32. Huang SS, Tsai SK, Chih CL et al (2001) Neuroprotective effect of hexasulfobutylated C60 on rats subjected to focal cerebral ischemia. Free Radic Biol Med 30(6):643–649

    Article  CAS  PubMed  Google Scholar 

  33. Lin AM, Chyi BY, Wang SD et al (1999) Carboxyfullerene prevents iron-induced oxidative stress in rat brain. J Neurochem 72(4):1634–1640

    Article  CAS  PubMed  Google Scholar 

  34. Dugan LL, Lovett EG, Quick KL et al (2001) Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord 7(3):243–246

    Article  PubMed  Google Scholar 

  35. Miao Y, Xu J, Shen Y et al (2014) Nanoparticle as signaling protein mimic: robust structural and functional modulation of CaMKII upon specific binding to fullerene C60 nanocrystals. ACS Nano 8(6):6131–6144

    Article  CAS  PubMed  Google Scholar 

  36. Fortner JD, Lyon DY, Sayes CM et al (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39(11):4307–4316

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the National Natural Science Foundation of China (31500813, 31170965), MOST (2012CB932502), Natural Science Foundation of Guangdong Province (2017A030313134), and the fundamental research funds for the central universities (No. 17lgpy106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Wang or Longping Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miao, Y., Zhao, H., Chen, J., Wang, M., Wen, L. (2018). The Application of In Vivo Extracellular Recording Technique to Study the Biological Effects of Nanoparticles in Brain. In: Santamaria, F., Peralta, X. (eds) Use of Nanoparticles in Neuroscience. Neuromethods, vol 135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7584-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7584-6_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7582-2

  • Online ISBN: 978-1-4939-7584-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics