Molecular Modeling of Chemoreceptor:Ligand Interactions

  • Asuka A. Orr
  • Arul Jayaraman
  • Phanourios Tamamis
Part of the Methods in Molecular Biology book series (MIMB, volume 1729)


Docking algorithms have been widely used to elucidate ligand:receptor interactions that are important in biological function. Here, we introduce an in-house developed docking-refinement protocol that combines the following innovative features. (1) The use of multiple short molecular dynamics (MD) docking simulations, with residues within the binding pocket of the receptor unconstrained, so that the binding modes of the ligand in the binding pocket may be exhaustively examined. (2) The initial positioning of the ligand within the binding pocket based on complementary shape, and the use of both harmonic and quartic spherical potentials to constrain the ligand in the binding pocket during multiple short docking simulations. (3) The selection of the most probable binding modes generated by the short docking simulations using interaction energy calculations, as well as the subsequent application of all-atom MD simulations and physical-chemistry based free energy calculations to elucidate the most favorable binding mode of the ligand in complex with the receptor. In this chapter, we provide step-by-step instructions on how to computationally investigate the binding of small-molecule ligands to protein receptors by examining as control and test cases, respectively, the binding of l-serine and R-3,4-dihydroxymandelic acid (R-DHMA) to the Escherichia coli chemoreceptor Tsr. Similar computational strategies can be used for the molecular modeling of a series of ligand:protein receptor interactions.


Chemoattractants 3,4-Dihydroxymandelic acid (DHMA) Chemoreceptor Tsr Molecular docking Molecular dynamics simulations 



We thank the Texas A&M High Performance Research Computing Facility for the use of the Ada supercomputing cluster, where all MD simulations and free energy calculations were performed. This study is supported by start-up funding from the Artie McFerrin Department of Chemical Engineering at Texas A&M University awarded to P.T. and the Texas A&M University Graduate Diversity Fellowship from the TAMU Office of Graduate and Professional Studies awarded to A.A.O.


  1. 1.
    McFedries A, Schwaid A, Saghatelian A (2013) Methods for the elucidation of protein-small molecule interactions. Chem Biol 20:667–673CrossRefGoogle Scholar
  2. 2.
    Bren A, Eisenbach M (2000) How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation. J Bacteriol 182:6865–6873CrossRefGoogle Scholar
  3. 3.
    Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33:9–19CrossRefGoogle Scholar
  4. 4.
    Hegde M, Englert DL, Schrock S, Cohn WB, Vogt C et al (2011) Chemotaxis to the quorum-sensing signal AI-2 requires the Tsr chemoreceptor and the periplasmic LsrB AI-2-binding protein. J Bacteriol 193:768–773CrossRefGoogle Scholar
  5. 5.
    Springer MS, Goy MF, Adler J (1977) Sensory transduction in Escherichia coli: two complementary pathways of information processing that involve methylated proteins. Proc Natl Acad Sci U S A 74:3312–3316CrossRefGoogle Scholar
  6. 6.
    Hazelbauer GL (1975) Maltose chemoreceptor of Escherichia coli. J Bacteriol 122:206–214PubMedPubMedCentralGoogle Scholar
  7. 7.
    Harayama S, Palva ET, Hazelbauer GL (1979) Transposon-insertion mutants of Escherichia coli K12 defective in a component common to galactose and ribose chemotaxis. Mol Gen Genet 171:193–203CrossRefGoogle Scholar
  8. 8.
    Liu X, Parales RE (2008) Chemotaxis of Escherichia coli to pyrimidines: a new role for the signal transducer tap. J Bacteriol 190:972–979CrossRefGoogle Scholar
  9. 9.
    Manson MD, Blank V, Brade G, Higgins CF (1986) Peptide chemotaxis in E. coli involves the tap signal transducer and the dipeptide permease. Nature 321:253–256CrossRefGoogle Scholar
  10. 10.
    Pasupuleti S, Sule N, Cohn WB, MacKenzie DS, Jayaraman A et al (2014) Chemotaxis of Escherichia coli to norepinephrine (NE) requires conversion of NE to 3,4-dihydroxymandelic acid. J Bacteriol 196:3992–4000CrossRefGoogle Scholar
  11. 11.
    Tajima H, Imada K, Sakuma M, Hattori F, Nara T et al (2011) Ligand specificity determined by differentially arranged common ligand-binding residues in bacterial amino acid chemoreceptors Tsr and tar. J Biol Chem 286:42200–42210CrossRefGoogle Scholar
  12. 12.
    Hedblom ML, Adler J (1980) Genetic and biochemical properties of Escherichia coli mutants with defects in serine chemotaxis. J Bacteriol 144:1048–1060PubMedPubMedCentralGoogle Scholar
  13. 13.
    Calimet N, Simoes M, Changeux JP, Karplus M, Taly A et al (2013) A gating mechanism of pentameric ligand-gated ion channels. Proc Natl Acad Sci U S A 110:E3987–E3996CrossRefGoogle Scholar
  14. 14.
    Taylor ND, Garruss AS, Moretti R, Chan S, Arbing MA et al (2016) Engineering an allosteric transcription factor to respond to new ligands. Nat Methods 13:177–183CrossRefGoogle Scholar
  15. 15.
    Cassidy CK, Himes BA, Alvarez FJ, Ma J, Zhao G et al (2015) CryoEM and computer simulations reveal a novel kinase conformational switch in bacterial chemotaxis signaling. elife 4:e08419. [Epub ahead of print]CrossRefGoogle Scholar
  16. 16.
    Yu D, Ma X, Tu Y, Lai L (2015) Both piston-like and rotational motions are present in bacterial chemoreceptor signaling. Sci Rep 5:8640CrossRefGoogle Scholar
  17. 17.
    Yan Z, Wang J (2016) Methods and algorithms for molecular docking-based drug design and discovery. Ch 9. In: Scoring functions of protein-ligand interactions. IGI Global, PennsylvaniaCrossRefGoogle Scholar
  18. 18.
    Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288CrossRefGoogle Scholar
  19. 19.
    Wang Z, Sun H, Yao X, Li D, Xu L (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18:12964–12975CrossRefGoogle Scholar
  20. 20.
    Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614CrossRefGoogle Scholar
  21. 21.
    Cheng Y, Jin UH, Davidson LA, Chapkin RS, Jayaraman A et al (2016) Microbial-derived 1,4-dihydroxy-2-naphthoic acid and related compounds as aryl hydrocarbon receptor agonists/antagonists: Structure-activity relationships and receptor modeling. Toxicol Sci 155(2):458–473. kfw230 [Epub ahead of print]CrossRefGoogle Scholar
  22. 22.
    Yang J, Yan R, Roy A, Xu D, Poisson J et al (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8CrossRefGoogle Scholar
  23. 23.
    Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(W1):W244–2488CrossRefGoogle Scholar
  24. 24.
    Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucl Acids Res 42(W1):W252–W258CrossRefGoogle Scholar
  25. 25.
    MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  26. 26.
    Best RB, Zhu X, Shim J, Lopes PE, Mittal J et al (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J Chem Theory Comput 8:3257–3273CrossRefGoogle Scholar
  27. 27.
    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690PubMedPubMedCentralGoogle Scholar
  28. 28.
    Yesselman JD, Price DJ, Knight JL, Brooks CL 3rd (2012) MATCH: an atom-typing toolset for molecular mechanics force fields. J Comput Chem 33:189–202CrossRefGoogle Scholar
  29. 29.
    Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) SwissParam, a fast force field generation tool for small organic molecules. J Comput Chem 32:2359–2368CrossRefGoogle Scholar
  30. 30.
    Irwin JJ, Shoichet BK (2005) ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182CrossRefGoogle Scholar
  31. 31.
    Vainio MJ, Puranen JS, Johnson MS (2009) ShaEP: molecular overlay based on shape and electrostatic potential. J Chem Inf Model 49:492–502CrossRefGoogle Scholar
  32. 32.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461PubMedPubMedCentralGoogle Scholar
  33. 33.
    Anighoro A, Bajorath J (2016) Three-dimensional similarity in molecular docking: prioritizing ligand poses on the basis of experimental binding modes. J Chem Inf Model 56:580–587CrossRefGoogle Scholar
  34. 34.
    Im W, Lee MS, Brooks CL 3rd (2003) Generalized born model with a simple smoothing function. J Comput Chem 24:1691–1702CrossRefGoogle Scholar
  35. 35.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  36. 36.
    Godschalk F, Genheden S, Söderhjelm P, Ryde U (2013) Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations. Phys Chem Chem Phys 15:7731–7739CrossRefGoogle Scholar
  37. 37.
    Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865CrossRefGoogle Scholar
  38. 38.
    Nilsson L (2009) Efficient table lookup without inverse square roots for calculation of pair wise atomic interactions in classical simulations. J Comput Chem 30:1490–1498CrossRefGoogle Scholar
  39. 39.
    Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461CrossRefGoogle Scholar
  40. 40.
    Tamamis P, Floudas CA (2014) Molecular recognition of CCR5 by an HIV-1 gp120 V3 loop. PLoS One 9:e95767CrossRefGoogle Scholar
  41. 41.
    Tamamis P, Floudas CA (2013) Molecular recognition of CXCR4 by a dual tropic HIV-1 gp120 V3 loop. Biophys J 105:1502–1514CrossRefGoogle Scholar
  42. 42.
    Tamamis P, Floudas CA (2014) Elucidating a key component of cancer metastasis: CXCL12 (SDF-1α) binding to CXCR4. J Chem Inf Model 54:1174–1188CrossRefGoogle Scholar
  43. 43.
    Tamamis P, Floudas CA (2014) Elucidating a key anti-HIV-1 and cancer-associated axis: the structure of CCL5 (Rantes) in complex with CCR5. Sci Rep 4:5447CrossRefGoogle Scholar
  44. 44.
    Tamamis P, Kieslich CA, Nikiforovich GV, Woodruff TM, Morikis D et al (2014) Insights into the mechanism of C5aR inhibition by PMX53 via implicit solvent molecular dynamics simulations and docking. BMC Biophys 7:5CrossRefGoogle Scholar
  45. 45.
    Neudert G, Klebe G (2011) DSX: a knowledge-based scoring function for the assessment of protein-ligand complexes. J Chem Inf Model 51:2731–2745CrossRefGoogle Scholar
  46. 46.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:27–28–33–38CrossRefGoogle Scholar
  47. 47.
    Seeber M, Cecchini M, Rao F, Settanni G, Caflisch A (2007) Wordom: a program for efficient analysis of molecular dynamics simulations. Bioinformatics 23:2625–2627CrossRefGoogle Scholar
  48. 48.
    Tamamis P, López de Victoria A, Gorham RD Jr, Bellows-Peterson ML, Pierou P et al (2012) Molecular dynamics in drug design: new generations of compstatin analogs. Chem Biol Drug Des 79:703–718CrossRefGoogle Scholar
  49. 49.
    Tamamis P, Pierou P, Mytidou C, Floudas CA, Morikis D et al (2011) Design of a modified mouse protein with ligand binding properties of its human analog by molecular dynamics simulations: the case of C3 inhibition by compstatin. Proteins 79:3166–3179CrossRefGoogle Scholar
  50. 50.
    Tamamis P, Morikis D, Floudas CA, Archontis G (2010) Species specificity of the complement inhibitor compstatin investigated by all-atom molecular dynamics simulations. Proteins 78:2655–2667PubMedPubMedCentralGoogle Scholar
  51. 51.
    Khoury GA, Smadbeck J, Tamamis P, Vandris AC, Kieslich CA et al (2014) Forcefield_NCAA: ab initio charge parameters to aid in the discovery and design of therapeutic proteins and peptides with unnatural amino acids and their application to complement inhibitors of the compstatin family. ACS Synth Biol 3:855–869CrossRefGoogle Scholar
  52. 52.
    Kieslich CA, Tamamis P, Gorham RD, López de Victoria A, Sausman N (2012) Exploring protein-protein and protein-ligand interactions in the immune system using molecular dynamics and continuum electrostatics. Curr Phys Chem 2:324–343CrossRefGoogle Scholar
  53. 53.
    Lee L, Mizuno T, Imae Y (1988) Thermosensing properties of Escherichia coli tsr mutants defective in serine chemoreception. J Bacteriol 170:4769–4774CrossRefGoogle Scholar
  54. 54.
    Falke JJ, Hazelbauer GL (2001) Transmembrane signaling in bacterial chemoreceptors. Trends Biochem Sci 26:257–265CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Asuka A. Orr
    • 1
  • Arul Jayaraman
    • 1
  • Phanourios Tamamis
    • 1
  1. 1.Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations