Skip to main content

Bacterial Chemoreceptor Imaging at High Spatiotemporal Resolution Using Photoconvertible Fluorescent Proteins

  • Protocol
  • First Online:
Bacterial Chemosensing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1729))

Abstract

We describe two methods for high-resolution fluorescence imaging of the positioning and mobility of E. coli chemoreceptors fused to photoconvertible fluorescent proteins. Chemoreceptors such as Tar and Tsr are transmembrane proteins expressed at high levels (thousands of copies per cell). Together with their cognate cytosolic signaling proteins, they form clusters on the plasma membrane. Theoretical models imply that the size of these clusters is an important parameter for signaling, and recent PALM imaging has revealed a broad distribution of cluster sizes. We describe experimental setups and protocols for PALM imaging in fixed cells with ~10 nm spatial precision, which allows analysis of cluster-size distributions, and localized-photoactivation single-particle tracking (LPA-SPT) in live cells at ~10 ms temporal resolution, which allows for analysis of cluster mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  Google Scholar 

  2. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783

    Article  CAS  Google Scholar 

  3. Betzig E (2015) Single molecules, cells, and super-resolution optics (nobel lecture). Angew Chem Int Ed Engl 54:8034–8053

    Article  CAS  Google Scholar 

  4. Hell SW (2007) Far-field optical nanoscopy. Science 316:246–249

    Article  Google Scholar 

  5. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    Article  CAS  Google Scholar 

  6. Betzig E (1995) Proposed method for molecular optical imaging. Opt Lett 20:237–239

    Article  CAS  Google Scholar 

  7. Greenfield D et al (2009) Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol 7:1–12

    Article  Google Scholar 

  8. Manley S et al (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157

    Article  CAS  Google Scholar 

  9. English BP, English BP, Hauryliuk V, Sanamrad A, Tankov S et al (2011) Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc Natl Acad Sci U S A 108:E365–E373

    Article  CAS  Google Scholar 

  10. Niu L, Yu J (2008) Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys J 95:2009–2016

    Article  CAS  Google Scholar 

  11. Stracy M, Lesterlin C, Garza de Leon F, Uphoff S, Zawadzki P et al (2015) Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc Natl Acad Sci U S A 112:E4390–E4399

    Article  CAS  Google Scholar 

  12. Adler J (1966) Chemotaxis in bacteria. Science 153:708–716

    Article  CAS  Google Scholar 

  13. Sourjik V, Vaknin A, Shimizu TS, Berg HC (2007) In vivo measurement by FRET of pathway activity in bacterial chemotaxis. Methods Enzymol 423:365–391

    Article  CAS  Google Scholar 

  14. Berg HC, Block SM (1984) A miniature flow cell designed for rapid exchange of media under high-power microscope objectives. J Gen Microbiol 130:2915–2920

    CAS  Google Scholar 

  15. Ovesny M, Krizek P, Borkovec J, Svindrych Z, Hagen GM (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389–2390

    Article  CAS  Google Scholar 

  16. Daszykowski M, Walczak B (2009) Density-based clustering methods. In: Reedijk J (ed) Reference module in chemistry, molecular sciences and chemical engineering, vol 2.29. Elsevier, Waltham, MA, pp 635–654

    Google Scholar 

  17. Colville K, Tompkins N, Rutenberg AD, Jericho MH (2010) Effects of poly(L-lysine) substrates on attached Escherichia coli bacteria. Langmuir 26:2639–2644

    Article  CAS  Google Scholar 

  18. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S (2008) l Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702

    Article  CAS  Google Scholar 

  19. Thiem S, Kentner D, Sourjik V (2007) Positioning of chemosensory clusters in E. coli and its relation to cell division. EMBO J 26:1615–1623

    Article  CAS  Google Scholar 

  20. Amann E, Ochs B, Abel KJ (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69:301–315

    Article  CAS  Google Scholar 

  21. Guzman LM, Belin D, Carson MJ, Beckwith JJ (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130

    Article  CAS  Google Scholar 

  22. Guarente L (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 101:181–191

    Article  CAS  Google Scholar 

  23. Ames P, Studdert CA, Reiser RH, Parkinson JS (2002) Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. Proc Natl Acad Sci U S A 99:7060–7065

    Article  CAS  Google Scholar 

  24. Endres RG, Oleksiuk O, Hansen CH, Meir Y, Sourjik V et al (2008) Variable sizes of Escherichia coli chemoreceptor signaling teams. Mol Syst Biol 4:211

    Article  Google Scholar 

  25. Frank V, Piñas GE, Cohen H, Parkinson JS, Vaknin A (2016) Networked chemoreceptors benefit bacterial chemotaxis performance. MBio 7:1–9

    Article  Google Scholar 

  26. Srinivasan R, Scolari VF, Lagomarsino MC, Seshasayee AS (2015) The genome-scale interplay amongst xenogene silencing, stress response and chromosome architecture in Escherichia coli. Nucleic Acids Res 43:295–308

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank J.S. Parkinson and G. Pinas for strains, plasmids, and helpful discussions; A.S.N. Seshasayee for strain HS1; and H.C. Berg and K.A. Fahrner for the gift of anti-FliC antibody. This work was supported by NWO/FOM and the Paul G. Allen Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Shimizu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Solari, J., Anquez, F., Scherer, K.M., Shimizu, T.S. (2018). Bacterial Chemoreceptor Imaging at High Spatiotemporal Resolution Using Photoconvertible Fluorescent Proteins. In: Manson, M. (eds) Bacterial Chemosensing. Methods in Molecular Biology, vol 1729. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7577-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7577-8_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7576-1

  • Online ISBN: 978-1-4939-7577-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics