Skip to main content

Tuning Chemoreceptor Signaling by Positioning Aromatic Residues at the Lipid–Aqueous Interface

  • Protocol
  • First Online:
  • 1374 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1729))

Abstract

Aromatic tuning facilitates stimulus-independent modulation of receptor output. The methodology is based upon the affinity of amphipathic aromatic residues, namely Trp and Tyr, for the polar–hydrophobic interfaces found within biological membranes. Here, we describe the application of aromatic tuning within the aspartate chemoreceptor of Escherichia coli (Tar). We have also employed the method within other related proteins, such as sensor histidine kinases (SHKs), and therefore hope that other research groups find it useful to modulate signal output from their receptor of interest.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Draheim RR, Bormans AF, Lai RZ, Manson MD (2006) Tuning a bacterial chemoreceptor with protein-membrane interactions. Biochemistry 45(49):14655–14664

    Article  CAS  PubMed  Google Scholar 

  2. Norholm MH, von Heijne G, Draheim RR (2015) Forcing the issue: aromatic tuning facilitates stimulus-independent modulation of a two-component signaling circuit. ACS Synth Biol 4:474–481

    Article  PubMed  Google Scholar 

  3. Yusuf R, Draheim RR (2015) Employing aromatic tuning to modulate output from two-component signaling circuits. J Biol Eng 9:7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lehning CE, Heidelberger JB, Reinhard J, Norholm MH et al (2017) A modular high-throughput in vivo screening platform based on chimeric bacterial receptors. ACS Synth Biol 6(7):1315–1326

    Article  CAS  PubMed  Google Scholar 

  5. Killian JA, Salemink I, de Planque MR, Lindblom G, Koeppe RE II et al (1996) Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Biochemistry 35:1037–1045

    Article  CAS  PubMed  Google Scholar 

  6. de Planque MR, Greathouse DV, Koeppe RE II, Schafer H, Marsh D et al (1998) Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. Biochemistry 37:9333–9345

    Article  PubMed  Google Scholar 

  7. de Planque MR, Boots JW, Rijkers DT, Liskamp RM, Greathouse DV et al (2002) The effects of hydrophobic mismatch between phosphatidylcholine bilayers and transmembrane alpha-helical peptides depend on the nature of interfacially exposed aromatic and charged residues. Biochemistry 41:8396–8404

    Article  PubMed  Google Scholar 

  8. de Planque MR, Bonev BB, Demmers JA, Greathouse DV, Koeppe RE II et al (2003) Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions. Biochemistry 42:5341–5348

    Article  PubMed  Google Scholar 

  9. Nilsson I, Saaf A, Whitley P, Gafvelin G, Waller C et al (1998) Proline-induced disruption of a transmembrane alpha-helix in its natural environment. J Mol Biol 284:1165–1175

    Article  CAS  PubMed  Google Scholar 

  10. Braun P, von Heijne G (1999) The aromatic residues Trp and Phe have different effects on the positioning of a transmembrane helix in the microsomal membrane. Biochemistry 38:9778–9782

    Article  CAS  PubMed  Google Scholar 

  11. Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y et al (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450(7172):1026–1030

    Article  CAS  PubMed  Google Scholar 

  12. Botelho SC, Enquist K, von Heijne G, Draheim RR (2015) Differential repositioning of the second transmembrane helices from E. coli Tar and EnvZ upon moving the flanking aromatic residues. Biochim Biophys Acta 1848:615–621

    Article  CAS  PubMed  Google Scholar 

  13. Draheim RR, Bormans AF, Lai RZ, Manson MD (2005) Tryptophan residues flanking the second transmembrane helix (TM2) set the signaling state of the Tar chemoreceptor. Biochemistry 44:1268–1277

    Article  CAS  PubMed  Google Scholar 

  14. Falke JJ, Hazelbauer GL (2001) Transmembrane signaling in bacterial chemoreceptors. Trends Biochem Sci 26:257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Falke JJ, Erbse AH (2009) The piston rises again. Structure 17:1149–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miller AS, Falke JJ (2004) Side chains at the membrane-water interface modulate the signaling state of a transmembrane receptor. Biochemistry 43:1763–1770

    Article  CAS  PubMed  Google Scholar 

  17. Isaac B, Gallagher GJ, Balazs YS, Thompson LK (2002) Site-directed rotational resonance solid-state NMR distance measurements probe structure and mechanism in the transmembrane domain of the serine bacterial chemoreceptor. Biochemistry 41:3025–3036

    Article  CAS  PubMed  Google Scholar 

  18. Hall BA, Armitage JP, Sansom MS (2011) Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling. PLoS Comput Biol 7:e1002204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wright GA, Crowder RL, Draheim RR, Manson MD (2011) Mutational analysis of the transmembrane helix 2-HAMP domain connection in the Escherichia coli aspartate chemoreceptor Tar. J Bacteriol 193:82–90

    Article  CAS  PubMed  Google Scholar 

  20. Adase CA, Draheim RR, Manson MD (2012) The residue composition of the aromatic anchor of the second transmembrane helix determines the signaling properties of the aspartate/maltose chemoreceptor Tar of Escherichia coli. Biochemistry 51:1925–1932

    Article  CAS  PubMed  Google Scholar 

  21. Adase CA, Draheim RR, Rueda G, Desai R, Manson MD (2013) Residues at the cytoplasmic end of transmembrane helix 2 determine the signal output of the TarEc chemoreceptor. Biochemistry 52:2729–2738

    Article  CAS  PubMed  Google Scholar 

  22. Berg HC, Block SM (1984) A miniature flow cell designed for rapid exchange of media under high-power microscope objectives. J Gen Microbiol 130:2915–2920

    CAS  PubMed  Google Scholar 

  23. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  24. Ward SM, Delgado A, Gunsalus RP, Manson MD (2002) A NarX-Tar chimera mediates repellent chemotaxis to nitrate and nitrite. Mol Microbiol 44:709–719

    Article  CAS  PubMed  Google Scholar 

  25. Heininger A, Yusuf R, Lawrence R, Draheim RR (2016) Identification of transmembrane helix 1 (TM1) surfaces important for EnvZ signalling and dimerisation. Biochim Biophys Acta 1858:1868–1875

    Article  CAS  PubMed  Google Scholar 

  26. Lai RZ, Bormans AF, Draheim RR, Wright GA, Manson MD (2008) The region preceding the C-terminal NWETF pentapeptide modulates baseline activity and aspartate inhibition of Escherichia coli Tar. Biochemistry 47:13287–13295

    Article  CAS  PubMed  Google Scholar 

  27. Cohen SN, Chang AC, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69:2110–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuwajima G (1988) Construction of a minimum-size functional flagellin of Escherichia coli. J Bacteriol 170:3305–3309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nyholm TK, Ozdirekcan S, Killian JA (2007) How protein transmembrane segments sense the lipid environment. Biochemistry 46:1457–1465

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

R.Y. was generously supported by the Indonesia Endowment Fund for Education, Ministry of Finance (S-4833/LPDP.3/2015). R.J.L. and L.V.E. received support from the University of Portsmouth. R.R.D. was supported with start-up funding from the Faculty of Science and from the Institute of Biological and Biomolecular Science (IBBS) at the University of Portsmouth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger R. Draheim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yusuf, R., Lawrence, R.J., Eke, L.V., Draheim, R.R. (2018). Tuning Chemoreceptor Signaling by Positioning Aromatic Residues at the Lipid–Aqueous Interface. In: Manson, M. (eds) Bacterial Chemosensing. Methods in Molecular Biology, vol 1729. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7577-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7577-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7576-1

  • Online ISBN: 978-1-4939-7577-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics