Skip to main content

Directed Evolution of Orthogonal Pyrrolysyl-tRNA Synthetases in Escherichia coli for the Genetic Encoding of Noncanonical Amino Acids

  • Protocol
  • First Online:
Noncanonical Amino Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1728))

Abstract

The directed evolution of orthogonal aminoacyl-tRNA synthetases (aaRS) for the genetic encoding of noncanonical amino acids (ncAA) has paved the way for the site-specific incorporation of >170 functionally diverse ncAAs into proteins in a large number of organisms [1, 2]. Here, we describe the directed evolution of orthogonal pyrrolysyl-tRNA synthetase (PylRS) mutants with new amino acid selectivities from libraries using a two-step selection protocol based on chloramphenicol and barnase reporter systems. Although this protocol focuses on the evolution of PylRS variants, this procedure can be universally employed to evolve orthogonal aaRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413. https://doi.org/10.1146/Annurev.Biochem.052308.105824

    Article  CAS  PubMed  Google Scholar 

  2. Chin JW (2014) Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem 83:379–408. https://doi.org/10.1146/annurev-biochem-060713-035737

    Article  CAS  PubMed  Google Scholar 

  3. Blight SK, Larue RC, Mahapatra A, Longstaff DG, Chang E, Zhao G, Kang PT, Church-Church KB, Chan MK, Krzycki JA (2004) Direct charging of tRNA(CUA) with pyrrolysine in vitro and in vivo. Nature 431(7006):333. https://doi.org/10.1038/Nature02895

    Article  CAS  PubMed  Google Scholar 

  4. Wan W, Tharp JM, Liu WR (2014) Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim Biophys Acta 1844(6):1059–1070. https://doi.org/10.1016/j.bbapap.2014.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kavran JM, Gundllapalli S, O'Donoghue P, Englert M, Soll D, Steitz TA (2007) Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation. Proc Natl Acad Sci U S A 104(27):11268–11273. https://doi.org/10.1073/pnas.0704769104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmidt MJ, Weber A, Pott M, Welte W, Summerer D (2014) Structural basis of furan-amino acid recognition by a polyspecific aminoacyl-tRNA-synthetase and its genetic encoding in human cells. Chembiochem 15(12):1755–1760. https://doi.org/10.1002/cbic.201402006

    Article  CAS  PubMed  Google Scholar 

  7. Cropp TA, Anderson JC, Chin JW (2007) Reprogramming the amino-acid substrate specificity of orthogonal aminoacyl-tRNA synthetases to expand the genetic code of eukaryotic cells. Nat Protoc 2(10):2590–2600. https://doi.org/10.1038/nprot.2007.378

    Article  CAS  PubMed  Google Scholar 

  8. Lacey VK, Louie GV, Noel JP, Wang L (2013) Expanding the library and substrate diversity of the Pyrrolysyl-tRNA Synthetase to incorporate unnatural amino acids containing conjugated rings. Chembiochem 14(16):2100–2105. https://doi.org/10.1002/cbic.201300400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang LX, Gao H, Zhu XC, Wang X, Zhou M, Jiang RX (2012) Construction of “small-intelligent” focused mutagenesis libraries using well-designed combinatorial degenerate primers. Biotechniques 52(3):149–158. https://doi.org/10.2144/000113820

    CAS  PubMed  Google Scholar 

  10. Liu DR, Schultz PG (1999) Progress toward the evolution of an organism with an expanded genetic code. Proc Natl Acad Sci U S A 96(9):4780–4785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pastrnak M, Magliery TJ, Schultz PG (2000) A new orthogonal suppressor tRNA/aminoacyl-tRNA synthetase pair for evolving an organism with an expanded genetic code. Helv Chim Acta 83(9):2277–2286. https://doi.org/10.1002/1522-2675(20000906)83:9<2277::Aid-Hlca2277>3.0.Co;2-L

    Article  CAS  Google Scholar 

  12. Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia Coli. Science 292(5516):498–500

    Article  CAS  PubMed  Google Scholar 

  13. Umehara T, Kim J, Lee S, Guo LT, Soll D, Park HS (2012) N-acetyl lysyl-tRNA synthetases evolved by a CcdB-based selection possess N-acetyl lysine specificity in vitro and in vivo. FEBS Lett 586(6):729–733. https://doi.org/10.1016/J.Febslet.2012.01.029

    Article  CAS  PubMed  Google Scholar 

  14. Plumbridge J, Soll D (1987) The effect of dam methylation on the expression of Glns in Escherichia-Coli. Biochimie 69(5):539–541. https://doi.org/10.1016/0300-9084(87)90091-5

    Article  CAS  PubMed  Google Scholar 

  15. Plass T, Milles S, Koehler C, Schultz C, Lemke EA (2011) Genetically encoded copper-free click chemistry. Angew Chem Int Ed Engl 50(17):3878. https://doi.org/10.1002/anie.201008178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dose A, Liokatis S, Theillet FX, Selenko P, Schwarzer D (2011) NMR profiling of histone deacetylase and acetyl-transferase activities in real time. ACS Chem Biol 6(5):419–424. https://doi.org/10.1021/cb1003866

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt MJ, Borbas J, Drescher M, Summerer D (2014) A genetically encoded spin label for electron paramagnetic resonance distance measurements. J Am Chem Soc 136(4):1238–1241. https://doi.org/10.1021/ja411535q

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt MJ, Summerer D (2013) Red-light-controlled protein-RNA crosslinking with a genetically encoded furan. Angew Chem Int Ed Engl 52(17):4690–4693. https://doi.org/10.1002/anie.201300754

    Article  CAS  PubMed  Google Scholar 

  19. Siegele DA, Hu JC (1997) Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc Natl Acad Sci U S A 94(15):8168–8172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S (2008) Crystallographic studies on multiple conformational states of active-site loops in pyrrolysyl-tRNA synthetase. J Mol Biol 378(3):634–652

    Article  CAS  PubMed  Google Scholar 

  21. Schneider S, Gattner MJ, Vrabel M, Flugel V, Lopez-Carrillo V, Prill S, Carell T (2013) Structural insights into incorporation of Norbornene amino acids for click modification of proteins. Chembiochem 14:2114. https://doi.org/10.1002/cbic.201300435

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge support by the TU Dortmund, the University of Konstanz and the Konstanz Research School Chemical Biology. This work was supported by grants from the Deutsche Forschungsgemeinschaft (SU-726/2-2 in SPP1623 and SU-726/4-2 in SPP1601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Summerer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schmidt, M.J., Summerer, D. (2018). Directed Evolution of Orthogonal Pyrrolysyl-tRNA Synthetases in Escherichia coli for the Genetic Encoding of Noncanonical Amino Acids. In: Lemke, E. (eds) Noncanonical Amino Acids. Methods in Molecular Biology, vol 1728. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7574-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7574-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7573-0

  • Online ISBN: 978-1-4939-7574-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics