Skip to main content

Mapping of Protein Interfaces in Live Cells Using Genetically Encoded Crosslinkers

  • Protocol
  • First Online:
Book cover Noncanonical Amino Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1728))

Abstract

Understanding the topology of protein-protein interactions is a matter of fundamental importance in the biomedical field. Biophysical approaches such as X-ray crystallography and nuclear magnetic resonance can investigate in detail only isolated protein complexes that are reconstituted in an artificial environment. Alternative methods are needed to investigate protein interactions in a physiological context, as well as to characterize protein complexes that elude the direct structural characterization. We describe here a general strategy to investigate protein interactions at the molecular level directly in the live mammalian cell, which is based on the genetic incorporation of photo- and chemical crosslinking noncanonical amino acids. First a photo-crosslinking amino acid is used to map putative interaction surfaces and determine which positions of a protein come into proximity of an associated partner. In a second step, the subset of residues that belong to the binding interface are substituted with a chemical crosslinker that reacts selectively with proximal cysteines strategically placed in the interaction partner. This allows determining inter-molecular spatial constraints that provide the basis for building accurate molecular models. In this chapter, we illustrate the detailed application of this experimental strategy to unravel the binding modus of the 40-mer neuropeptide hormone Urocortin1 to its class B G-protein coupled receptor, the corticotropin releasing factor receptor type 1. The approach is in principle applicable to any protein complex independent of protein type and size, employs established techniques of noncanonical amino acid mutagenesis, and is feasible in any molecular biology laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    Article  CAS  PubMed  Google Scholar 

  2. Neumann H (2012) Rewiring translation - genetic code expansion and its applications. FEBS Lett 586(15):2057–2064

    Article  CAS  PubMed  Google Scholar 

  3. Wang Q, Parrish AR, Wang L (2009) Expanding the genetic code for biological studies. Chem Biol 16(3):323–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lang K, Chin JW (2014) Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem Rev 114(9):4764–4806

    Article  CAS  PubMed  Google Scholar 

  5. Ai HW (2012) Biochemical analysis with the expanded genetic lexicon. Anal Bioanal Chem 403(8):2089–2102

    Article  CAS  PubMed  Google Scholar 

  6. Chin JW, Santoro SW, Martin AB, King DS, Wang L, Schultz PG (2002) Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc 124(31):9026–9027

    Article  CAS  PubMed  Google Scholar 

  7. Chin JW, Martin AB, King DS, Wang L, Schultz PG (2002) Addition of a photocrosslinking amino acid to the genetic code of Escherichiacoli. Proc Natl Acad Sci U S A 99(17):11020–11024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deiters A, Cropp TA, Mukherji M, Chin JW, Anderson JC, Schultz PG (2003) Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J Am Chem Soc 125(39):11782–11783

    Article  CAS  PubMed  Google Scholar 

  9. Chin JW, Cropp TA, Anderson JC, Mukherji M, Zhang Z, Schultz PG (2003) An expanded eukaryotic genetic code. Science 301(5635):964–967

    Article  CAS  PubMed  Google Scholar 

  10. Liu W, Brock A, Chen S, Schultz PG (2007) Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods 4(3):239–244

    Article  CAS  PubMed  Google Scholar 

  11. Wang WY, Takimoto JK, Louie GV, Baiga TJ, Noel JP, Lee KF, Slesinger PA, Wang L (2007) Genetically encoding unnatural amino acids for cellular and neuronal studies. Nat Neurosci 10(8):1063–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S (2008) Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. Chem Biol 15(11):1187–1197

    Article  CAS  PubMed  Google Scholar 

  13. Nguyen DP, Lusic H, Neumann H, Kapadnis PB, Deiters A, Chin JW (2009) Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA Synthetase/tRNA(CUA) pair and click chemistry. J Am Chem Soc 131(25):8720–8721

    Article  CAS  PubMed  Google Scholar 

  14. Hao Z, Song Y, Lin S, Yang M, Liang Y, Wang J, Chen PR (2011) A readily synthesized cyclic pyrrolysine analogue for site-specific protein “click” labeling. Chem Commun (Camb) 47(15):4502–4504

    Article  CAS  Google Scholar 

  15. Lin S, Zhang Z, Xu H, Li L, Chen S, Li J, Hao Z, Chen PR (2011) Site-specific incorporation of photo-cross-linker and bioorthogonal amino acids into enteric bacterial pathogens. J Am Chem Soc 133(50):20581–20587

    Article  CAS  PubMed  Google Scholar 

  16. Ai HW, Shen W, Sagi A, Chen PR, Schultz PG (2011) Probing protein-protein interactions with a genetically encoded photo-crosslinking amino acid. Chembiochem 12(12):1854–1857

    Article  CAS  PubMed  Google Scholar 

  17. Zhang M, Lin S, Song X, Liu J, Fu Y, Ge X, Fu X, Chang Z, Chen PR (2011) A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. Nat Chem Biol 7(10):671–677

    Article  CAS  PubMed  Google Scholar 

  18. Hino N, Oyama M, Sato A, Mukai T, Iraha F, Hayashi A, Kozuka-Hata H, Yamamoto T, Yokoyama S, Sakamoto K (2011) Genetic incorporation of a photo-crosslinkable amino acid reveals novel protein complexes with GRB2 in mammalian cells. J Mol Biol 406(2):343–353

    Article  CAS  PubMed  Google Scholar 

  19. Tippmann EM, Liu W, Summerer D, Mack AV, Schultz PG (2007) A genetically encoded diazirine photocrosslinker in Escherichia coli. Chembiochem 8(18):2210–2214

    Article  CAS  PubMed  Google Scholar 

  20. Tanaka Y, Bond MR, Kohler JJ (2008) Photocrosslinkers illuminate interactions in living cells. Mol Biosyst 4(6):473–480

    Article  CAS  PubMed  Google Scholar 

  21. Xiang Z, Ren H, Hu YS, Coin I, Wei J, Cang H, Wang L (2013) Adding an unnatural covalent bond to proteins through proximity-enhanced bioreactivity. Nat Methods 10(9):885–888

    Article  CAS  PubMed  Google Scholar 

  22. Xiang Z, Lacey VK, Ren H, Xu J, Burban DJ, Jennings PA, Wang L (2014) Proximity-Enabled Protein Crosslinking through Genetically Encoding Haloalkane Unnatural Amino Acids. Angew Chem Int Ed Engl 53(8):2190–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen XH, Xiang Z, Hu YS, Lacey VK, Cang H, Wang L (2014) Genetically encoding an electrophilic amino acid for protein stapling and covalent binding to native receptors. ACS Chem Biol 9(9):1956–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coin I, Katritch V, Sun T, Xiang Z, Siu FY, Beyermann M, Stevens RC, Wang L (2013) Genetically encoded chemical probes in cells reveal the binding path of urocortin-I to CRF class B GPCR. Cell 155(6):1258–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coin I, Perrin MH, Vale WW, Wang L (2011) Photo-cross-linkers incorporated into G-protein-coupled receptors in mammalian cells: a ligand comparison. Angew Chem Int Ed Engl 50:8077–8081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Binder EB, Nemeroff CB (2010) The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol Psychiatry 15(6):574–588

    Article  CAS  PubMed  Google Scholar 

  27. Turcu AF, Spencer-Segal JL, Farber RH, Luo R, Grigoriadis DE, Ramm CA, Madrigal D, Muth T, O’Brien CF, Auchus RJ (2016) Single-dose study of a corticotropin-releasing factor receptor-1 antagonist in women with 21-hydroxylase deficiency. J Clin Endocrinol Metab 101:1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kraetke O, Holeran B, Berger H, Escher E, Bienert M, Beyermann M (2005) Photoaffinity cross-linking of the corticotropin-releasing factor receptor type 1 with photoreactive urocortin analogues. Biochemistry 44(47):15569–15577

    Article  CAS  PubMed  Google Scholar 

  29. Huang LY, Umanah G, Hauser M, Son C, Arshava B, Naider F, Becker JM (2008) Unnatural amino acid replacement in a yeast G protein-coupled receptor in its native environment. Biochemistry 47(20):5638–5648

    Article  CAS  PubMed  Google Scholar 

  30. Grunbeck A, Huber T, Sachdev P, Sakmar TP (2011) Mapping the ligand-binding site on a G protein-coupled receptor (GPCR) using genetically encoded photocrosslinkers. Biochemistry 50(17):3411–3413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ray-Saha S, Huber T, Sakmar TP (2014) Antibody epitopes on g protein-coupled receptors mapped with genetically encoded photoactivatable cross-linkers. Biochemistry 53(8):1302–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Valentin-Hansen L, Park M, Huber T, Grunbeck A, Naganathan S, Schwartz TW, Sakmar TP (2014) Mapping substance P binding sites on the neurokinin-1 receptor using genetic incorporation of a photoreactive amino acid. J Biol Chem 289(26):18045–18054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bittencourt JC, Vaughan J, Arias C, Rissman RA, Vale WW, Sawchenko PE (1999) Urocortin expression in rat brain: evidence against a pervasive relationship of urocortin-containing projections with targets bearing type 2 CRF receptors. J Comp Neurol 415(3):285–312

    Article  CAS  PubMed  Google Scholar 

  34. Sakamoto K, Hayashi A, Sakamoto A, Kiga D, Nakayama H, Soma A, Kobayashi T, Kitabatake M, Takio K, Saito K, Shirouzu M, Hirao I, Yokoyama S (2002) Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells. Nucleic Acids Res 30(21):4692–4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takimoto JK, Adams KL, Xiang Z, Wang L (2009) Improving orthogonal tRNA-synthetase recognition for efficient unnatural amino acid incorporation and application in mammalian cells. Mol Biosyst 5(9):931–934

    Article  CAS  PubMed  Google Scholar 

  36. Fukumoto Y, Obata Y, Ishibashi K, Tamura N, Kikuchi I, Aoyama K, Hattori Y, Tsuda K, Nakayama Y, Yamaguchi N (2010) Cost-effective gene transfection by DNA compaction at pH 4.0 using acidified, long shelf-life polyethylenimine. Cytotechnology 62(1):73–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Coin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Seidel, L., Coin, I. (2018). Mapping of Protein Interfaces in Live Cells Using Genetically Encoded Crosslinkers. In: Lemke, E. (eds) Noncanonical Amino Acids. Methods in Molecular Biology, vol 1728. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7574-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7574-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7573-0

  • Online ISBN: 978-1-4939-7574-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics