Skip to main content

Central Nervous System Neuron-Glia co-Culture Models and Application to Neuroprotective Agents

  • Protocol
  • First Online:
Neurotrophic Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1727))

Abstract

Glial cell activation plays an important role in the pathogenesis of various neurodegenerative disorders. This article presents a protocol for the preparation of cultures consisting of rat embryonic cortical neurons grown in the presence of cortical microglia, in which the glia are present in physical contact with the neurons or separated by a semipermeable membrane barrier. An example of how such systems can be used to evaluate potential neuroprotective agents will also be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Griffin WS, Sheng JG, Royston MC, Royston MC, Gentleman SM, McKenzie JE et al (1998) Glial-neuronal interactions in Alzheimer’s disease: the potential role of a “cytokine cycle” in disease progression. Brain Pathol 8:65–72

    Article  CAS  PubMed  Google Scholar 

  2. Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  3. Colton CA, Wilcock DM (2010) Assessing activation states in microglia. CNS Neurol Disord Drug Targets 9:174–191

    Article  CAS  PubMed  Google Scholar 

  4. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783

    Article  CAS  PubMed  Google Scholar 

  5. Craft JM, Watterson DM, Van Eldik LJ (2005) Neuroinflammation: a potential therapeutic target. Expert Opin Ther Targets 9:887–900

    Article  CAS  PubMed  Google Scholar 

  6. Skaper SD (2010) Microglia as a target for inflammatory processes and neuroprotective strategies. Am J Neuroprotec Neuroregen 2:35–47

    Article  Google Scholar 

  7. Perry VH, Holmes O (2014) Microglial priming in neurodegenerative diseases. Nat Rev Neurol 10:217–224

    Article  CAS  PubMed  Google Scholar 

  8. Skaper SD (2011) Ion channels on microglia: therapeutic targets for neuroprotection. CNS Neurol Disord Drug Targets 10:44–56

    Article  CAS  PubMed  Google Scholar 

  9. Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149:2736–2741

    CAS  PubMed  Google Scholar 

  10. Flavin MP, Zhao G, Ho LT (2000) Microglial tissue plasminogen activator (tPA) triggers neuronal apoptosis in vitro. Glia 29:347–354

    Article  CAS  PubMed  Google Scholar 

  11. Golde S, Chandran S, Brown GC, Compston A (2002) Different pathways for iNOS-mediated toxicity in vitro dependent on neuronal maturation and NMDA receptor expression. J Neurochem 82:269–282

    Article  CAS  PubMed  Google Scholar 

  12. Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R (2003) P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem 278:13309–13317

    Article  CAS  PubMed  Google Scholar 

  13. Culbert AA, Skaper SD, Howlett DR, Evans NA, Facci L, Soden PE et al (2006) MAPKAP kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity: relevance to neuroinflammation in a transgenic mouse model of Alzheimer’s disease. J Biol Chem 281:23658–23667

    Article  CAS  PubMed  Google Scholar 

  14. Skaper SD, Facci L, Culbert A, Evans NA, Chessell I, Davis JB et al (2006) P2X7 receptors on microglial cells mediate injury to cortical neurons in vitro. Glia 54:234–242

    Article  PubMed  Google Scholar 

  15. Jana A, Pahan K (2010) Fibrillar amyloid-β-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer’s disease. J Neurosci 30: 12676–12689

    Google Scholar 

  16. Skaper SD, Facci L, Giusti P (2013) Intracellular ion channel CLIC1: involvement in microglia-mediated β-amyloid peptide(1-42) neurotoxicity. Neurochem Res 38:1801–1808

    Article  CAS  PubMed  Google Scholar 

  17. Bouhy D, Ghasemlou N, Lively S, Redensek A, Rathore KI, Schlichter LC, David S (2011) Inhibition of the Ca2+-dependent K+ channel, KCNN4/KCa3.1, improves tissue protection and locomotor recovery after spinal cord injury. J Neurosci 31:16298–16308

    Article  CAS  PubMed  Google Scholar 

  18. Kaushal V, Koeberle PD, Wang Y, Schlichter LC (2007) The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. J Neurosci 27:234–244

    Article  CAS  PubMed  Google Scholar 

  19. Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci U S A 97:8151–8156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Facci L, Skaper SD (2012) Amyloid β-peptide neurotoxicity assay using cultured rat cortical neurons. Methods Mol Biol 846:57–65

    Article  CAS  PubMed  Google Scholar 

  21. Evans NA, Facci L, Owen DE, Soden PE, Burbidge SA, Prinjha RK, Richardson JC, Skaper SD (2008) Aβ1-42 reduces synapse number and inhibits neurite outgrowth in primary cortical and hippocampal neurons: a quantitative analysis. J Neurosci Methods 175:96–103

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Skaper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Skaper, S.D., Facci, L. (2018). Central Nervous System Neuron-Glia co-Culture Models and Application to Neuroprotective Agents. In: Skaper, S. (eds) Neurotrophic Factors. Methods in Molecular Biology, vol 1727. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7571-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7571-6_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7570-9

  • Online ISBN: 978-1-4939-7571-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics