Skip to main content

Growth and Neurotrophic Factors in Embryonic Stem Cells

  • Protocol
  • First Online:
Book cover Neurotrophic Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1727))

Abstract

In this chapter we illustrate protocols to investigate growth and neurotrophic factors in human and rodent (rat and mouse)-derived embryonic stem cells. The conventional two-dimensional cell monolayer system to grow embryonic stem cells is presented, focusing on the coating strategies also using extracellular matrix components. Then, different approaches for three-dimensional stem cell culture are presented, using hydrogels and scaffolds. Quantitative polymerase chain reaction, immunocytochemistry, immunoenzymatic ELISA assay, and multiparametric assays to quantify growth and neurotrophic factor production are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U SA 98:10716–10721. https://doi.org/10.1073/pnas.191362598

    Article  CAS  Google Scholar 

  2. Reubinoff BE, Pera MF, Fong C-Y, Trounson A, Bongso A (2000a) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404. https://doi.org/10.1038/74447

    Article  CAS  PubMed  Google Scholar 

  3. Amit M, Itskovitz-Eldor J (2009) Embryonic stem cells: isolation, characterization and culture. Adv Biochem Eng Biotechnol 114:173–184. https://doi.org/10.1007/10_2008_20

    CAS  PubMed  Google Scholar 

  4. Zare-Mehrjardi N, Khorasani MT, Hemmesi K, Mirzadeh H, Azizi H, Sadatnia B, Hatami M, Kiani S, Barzin J, Baharvand H (2011) Differentiation of embryonic stem cells into neural cells on 3D poly (D,L-lactic acid) scaffolds versus 2D cultures. Int J Artif Organs 34:1012–1023. https://doi.org/10.5301/ijao.5000002

    Article  CAS  PubMed  Google Scholar 

  5. Mueller-Klieser W (1997) Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am J Physiol Cell Physiol 273:C1109–C1123. 9357753

    CAS  Google Scholar 

  6. Knight E, Przyborski S (2015) Advances in 3D cell culture technologies enabling tissue‐like structures to be created in vitro. J Anat 227:746–756. https://doi.org/10.1111/joa.12257

    Article  PubMed  Google Scholar 

  7. Murphy AR, Laslett A, O’Brien CM, Cameron NR (2017) Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomater 54:1–20. https://doi.org/10.1016/j.actbio.2017.02.046

    Article  CAS  PubMed  Google Scholar 

  8. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med Camb Mass 6:88–95. PMID: 10859025

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shamblott MJ, Axelman J, Littlefield JW, Blumenthal PD, Huggins GR, Cui Y, Cheng L, Gearhart JD (2001) Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc Natl Acad Sci U S A 98:113–118. https://doi.org/10.1073/pnas.021537998

    Article  CAS  PubMed  Google Scholar 

  10. Carpenter MK, Inokuma MS, Denham J, Mujtaba T, Chiu CP, Rao MS (2001) Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 172:383–397. https://doi.org/10.1006/exnr.2001.7832

    Article  CAS  PubMed  Google Scholar 

  11. Levenberg S, Burdick JA, Kraehenbuehl T, Langer R (2005) Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds. Tissue Eng 11:506–512. https://doi.org/10.1089/ten.2005.11.506

    Article  CAS  PubMed  Google Scholar 

  12. Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci 99:3024–3029. https://doi.org/10.1073/pnas.052678899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kabiri M, Soleimani M, Shabani I, Futrega K, Ghaemi N, Ahvaz HH, Elahi E, Doran MR (2012) Neural differentiation of mouse embryonic stem cells on conductive nanofiber scaffolds. Biotechnol Lett 34:1357–1365. https://doi.org/10.1007/s10529-012-0889-4

    Article  CAS  PubMed  Google Scholar 

  14. Baraniak PR, McDevitt TC (2010) Stem cell paracrine actions and tissue regeneration. Regen Med 5:121–143. https://doi.org/10.2217/rme.09.74

    Article  PubMed  PubMed Central  Google Scholar 

  15. Czyz J, Wobus A (2001) Embryonic stem cell differentiation: the role of extracellular factors. Differ Res Biol Divers 68:167–174. PMID: 11776469

    Article  CAS  Google Scholar 

  16. Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, Pluchino S (2013) The stem cell secretome and its role in brain repair. Biochimie 95:2271–2285. https://doi.org/10.1016/j.biochi.2013.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015. PMID: 7605428

    Article  CAS  PubMed  Google Scholar 

  18. Doetschman TC, Eistetter H, KatzM SW, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45. PMID: 3897439

    CAS  PubMed  Google Scholar 

  19. Pineda ET, Nerem RM, Ahsan T (2013) Differentiation patterns of embryonic stem cells in two- versus three-dimensional culture. Cells Tissues Organs 197:399–410. https://doi.org/10.1159/000346166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ben-Dor I, Itsykson P, Goldenberg D, Galun E, Reubinoff BE (2006) Lentiviral vectors harboring a dual-gene system allow high and homogeneous transgene expression in selected polyclonal human embryonic stem cells. Mol Ther J Am Soc Gene Ther 14:255–267. https://doi.org/10.1016/j.ymthe.2006.02.010

    Article  CAS  Google Scholar 

  21. Fernández M, Pirondi S, Chen BL, Del Vecchio G, Alessandri M, Farnedi A, Pession A, Feki A, Jaconi MEE, Calzà L (2011) Isolation of rat embryonic stem-like cells: a tool for stem cell research and drug discovery. Dev Dyn Off Publ Am Assoc Anat 240:2482–2494. https://doi.org/10.1002/dvdy.22761

    Google Scholar 

  22. Alessandri M, Lizzo G, Gualandi C, Mangano C, Giuliani A, Focarete ML, Calzà L (2014) Influence of biological matrix and artificial electrospun scaffolds on proliferation, differentiation and trophic factor synthesis of rat embryonic stem cells. Matrix Biol 33:68–76. https://doi.org/10.1016/j.matbio.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  23. Baldassarro VA, Dolci LS, Mangano C, Giardino L, Gualandi C, Focarete ML, Calzà L (2016) In vitro testing of biomaterials for neural repair: focus on cellular systems and high-content analysis. BioResearch Open Access 5:201–211. https://doi.org/10.1089/biores.2016.0025

    Article  PubMed  PubMed Central  Google Scholar 

  24. Willerth SM, Faxel TE, Gottlieb DI, Sakiyama-Elbert SE (2007) The effects of soluble growth factors on embryonic stem cell differentiation inside of fibrin scaffolds. Stem Cells Dayt Ohio 25:2235–2244. https://doi.org/10.1634/stemcells.2007-0111

    Article  CAS  Google Scholar 

  25. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa SI (2000) Flk1, one of the receptors for vascular endothelial growth factor (VEGF), is a marker for lateral plate mesoderm. Nature 408:92–96. https://doi.org/10.1038/35040568

    Article  CAS  PubMed  Google Scholar 

  26. Paradisi M, Alviano F, Pirondi S, Lanzoni G, Fernandez M, Lizzo G, Giardino L, Giuliani A, Costa R, Marchionni C, Bonsi L, Calza L (2014) Human mesenchymal stem cells produce bioactive neurotrophic factors: source, individual variability and differentiation issues. Int J Immunopathol Pharmacol 27(3):391–402. PMID: 25280030

    Article  CAS  PubMed  Google Scholar 

  27. Hashemi-Tabar M, Javadnia F, Orazizadeh M, Baazm M (2005) Isolation and differentiation of mouse embryonic stem cells. Iranian J Reprod Biomed 3:42–46. http://www.bioline.org.br/pdf?rm05008

    Google Scholar 

Download references

Acknowledgments

This work has been supported by POR-FESR 2016-2020 (LC), Regione Emilia Romagna. We also acknowledge Dr. Marco Alessandri for his contribution to the experimental procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pannella, M., Giardino, L., Calzà, L., Fernández, M. (2018). Growth and Neurotrophic Factors in Embryonic Stem Cells. In: Skaper, S. (eds) Neurotrophic Factors. Methods in Molecular Biology, vol 1727. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7571-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7571-6_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7570-9

  • Online ISBN: 978-1-4939-7571-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics