Skip to main content

A Highly Efficient Strategy for Overexpressing circRNAs

  • Protocol
  • First Online:
Circular RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1724))

Abstract

Circular RNAs (circRNAs) constitute an emerging class of widespread, abundant, and evolutionarily conserved noncoding RNA. They play important and diverse roles in cell development, growth, and tumorigenesis, but functions of the majority of circRNAs remain enigmatic. In order to investigate circRNA function it is necessary to manipulate its expression. While various standard approaches exist for circRNA knockdown, here we present cloning vectors for simplifying the laborious process of cloning circRNAs to achieve high-efficiency overexpression in mammalian cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160:1125–1134

    Article  CAS  PubMed  Google Scholar 

  2. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58:870–885

    Article  CAS  PubMed  Google Scholar 

  4. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    Article  CAS  PubMed  Google Scholar 

  6. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  PubMed  Google Scholar 

  7. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20:1829–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806

    Article  CAS  PubMed  Google Scholar 

  9. You X, Vlatkovic I, Babic A, Will T, Epstein I et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18:603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44:2846–2858

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K et al (2016) Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 166:1055–1056

    Article  CAS  PubMed  Google Scholar 

  12. Yang W, Du WW, Li X, Yee AJ, Yang BB (2016) Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 35:3919–3931

    Article  CAS  PubMed  Google Scholar 

  13. Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt CA, Noto JJ, Filonov GS, Matera AG (2016) A method for expressing and imaging abundant, stable, circular RNAs in vivo using tRNA splicing. Methods Enzymol 572:215–236

    Article  CAS  PubMed  Google Scholar 

  15. Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL et al (2014) Complementary sequence-mediated exon circularization. Cell 159:134–147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Health and Medical Research Council (NHMRC) project grant funding to S.J.C. (GNT1089167) and G.J.G. (GNT1089167, GNT1068773, GNT1126711). Fellowship support was provided by the Australian Research Council Future Fellowship to S.J.C. (FT160100318) and NHMRC Research Fellowship to G.J.G. (GNT1118170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Conn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, D., Conn, V., Goodall, G.J., Conn, S.J. (2018). A Highly Efficient Strategy for Overexpressing circRNAs. In: Dieterich, C., Papantonis, A. (eds) Circular RNAs. Methods in Molecular Biology, vol 1724. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7562-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7562-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7561-7

  • Online ISBN: 978-1-4939-7562-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics