Skip to main content

Preparation of Circular RNA In Vitro

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1724))

Abstract

This chapter describes a simple and straightforward way to obtain single-stranded circular RNA sequences in vitro. Linear RNA that is phosphorylated at the 5′ end is first prepared by a chemical or enzymatic method, then circularized using ligase. The function of the prepared circular RNA molecule, such as an ability to induce translation, can then be investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Szabo L, Salzman J (2016) Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev Genet 17:679–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211

    Article  CAS  PubMed  Google Scholar 

  3. Petkovic S, Muller S (2015) RNA circularization strategies in vivo and in vitro. Nucleic Acids Res 43:2454–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, Shuto S, Matsuda A, Yoshida M, Ito Y, Abe H (2015) Rolling circle translation of circular RNA in living human cells. Sci Rep 5:16435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abe N, Hiroshima M, Maruyama H, Nakashima Y, Nakano Y, Matsuda A, Sako Y, Ito Y, Abe H (2013) Rolling circle amplification in a prokaryotic translation system using small circular RNA. Angew Chem Int Ed 52:7004–7008

    Article  CAS  Google Scholar 

  6. Ford E, Ares M (1994) Synthesis of circular RNA in bacteria and yeast using RNA cyclase ribozymes derived from a group I intron of phage T4. Proc Natl Acad Sci U S A 91:3117–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Umekage S, Kikuchi Y (2009) In vitro and in vivo production and purification of circular RNA aptamer. J Biotechnol 139:265–272

    Article  CAS  PubMed  Google Scholar 

  8. Perriman R, Ares M (1998) Circular mRNA can direct translation of extremely long repeating-sequence proteins in vivo. RNA 4:1047–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perriman R (2002) Circular mRNA encoding for monomeric and polymeric green fluorescent protein. Methods Mol Biol 183:69–85

    CAS  PubMed  Google Scholar 

  10. Chen CY, Sarnow P (1995) Initiation of protein-synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268:415–417

    Article  CAS  PubMed  Google Scholar 

  11. Diegelman AM, Kool ET (2001) Chemical and enzymatic methods for preparing circular single-stranded DNAs. Curr Protoc Nucleic Acid Chem Chapter 5:Unit 5. 2

    CAS  PubMed  Google Scholar 

  12. Kao C, Zheng M, Rudisser S (1999) A simple and efficient method to reduce nontemplated nucleotide addition at the 3′ terminus of RNAs transcribed by T7 RNA polymerase. RNA 5:1268–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pitsch S, Weiss PA, Jenny L, Stutz A, Wu XL (2001) Reliable chemical synthesis of oligoribonucleotides (RNA) with 2′-O-(triisopropylsilyl)oxymethyl(2′-O-tom)-protected phosphoramidites. Helv Chim Acta 84:3773–3795

    Article  CAS  Google Scholar 

  14. Horn T, Urdea MS (1986) A chemical 5′-phosphorylation of oligodeoxyribonucleotides that can be monitored by trityl cation release. Tetrahedron Lett 27:4705–4708

    Article  CAS  Google Scholar 

  15. Suzuki H, Zuo YH, Wang JH, Zhang MQ, Malhotra A, Mayeda A (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34:e63

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pitsch S, Weiss PA (2002) Chemical synthesis of RNA sequences with 2′-O-[(triisopropylsilyl)oxy]methyl-protected ribonucleoside phosphoramidites. Curr Protoc Nucleic Acid Chem Chapter 3:Unit 3. 8

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Abe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Abe, N., Kodama, A., Abe, H. (2018). Preparation of Circular RNA In Vitro. In: Dieterich, C., Papantonis, A. (eds) Circular RNAs. Methods in Molecular Biology, vol 1724. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7562-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7562-4_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7561-7

  • Online ISBN: 978-1-4939-7562-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics