Skip to main content

Cell-Specific RNA Quantification in Human SN DA Neurons from Heterogeneous Post-mortem Midbrain Samples by UV-Laser Microdissection and RT-qPCR

  • Protocol
  • First Online:
Book cover Laser Capture Microdissection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1723))

Abstract

Cell specificity of gene expression analysis is from particular relevance when the abundance of target cells is not homogeneous in the compared tissue samples, like it is the case, e.g., when comparing brain tissues from controls and in neurodegenerative disease states. While single-cell gene expression profiling is already a methodological challenge per se, it becomes even more prone to artifacts when analyzing individual cells from human post-mortem samples. Not only because human samples can never be matched as precisely as those from animal models, but also, because the RNA-quality that can be obtained from human samples usually displays a high range of variability. Here, we detail our most actual method for combining contact-free UV-laser microdissection (UV-LMD) with reverse transcription and quantitative PCR (RT-qPCR) that addresses all these issues. We specifically optimized our protocols to quantify and compare mRNA as well as miRNA levels in human neurons from post-mortem brain tissue. As human post-mortem tissue samples are never perfectly matched (e.g., in respect to distinct donor ages and RNA integrity numbers RIN), we refined data analysis by applying a linear mixed effects model to RT-qPCR data, which allows dissecting and subtracting linear contributions of distinct confounders on detected gene expression levels (i.e., RIN, age). All these issues were considered for comparative gene expression analysis in dopamine (DA) midbrain neurons of the Substantia nigra (SN) from controls and Parkinson’s disease (PD) specimens, as the preferential degeneration of SN DA neurons in the pathological hallmark of PD. By utilizing the here-described protocol we identified that a variety of genes—encoding for ion channels, dopamine metabolism proteins, and PARK gene products—display a transcriptional dysregulation in remaining human SN DA neurons from PD brains compared to those of controls. We show that the linear mixed effects model allows further stratification of RT-qPCR data, as it indicated that differential gene expression of some genes was rather correlated with different ages of the analyzed human brain samples than with the disease state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Stahlberg A, Kubista M (2014) The workflow of single-cell expression profiling using quantitative real-time PCR. Expert Rev Mol Diagn 14:323–331

    Article  CAS  Google Scholar 

  2. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  Google Scholar 

  3. Saraiva LR, Ibarra-Soria X, Khan M et al (2015) Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq. Sci Rep 5:18178

    Article  CAS  Google Scholar 

  4. Chen J, Suo S, Tam PP et al (2017) Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat Protoc 12:566–580

    Article  CAS  Google Scholar 

  5. Ziegenhain C, Vieth B, Parekh S et al (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65:631–643.e4

    Article  CAS  Google Scholar 

  6. Gierahn TM, Wadsworth MH, Hughes TK et al (2017) Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods 14:395

    Article  CAS  Google Scholar 

  7. AR W, Neff NF, Kalisky T et al (2014) Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 11:41–46

    Article  Google Scholar 

  8. Saliba AE, Aj W, Gorski SA et al (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42:8845–8860

    Article  CAS  Google Scholar 

  9. Elowitz MB, Levine AJ, Siggia ED et al (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  CAS  Google Scholar 

  10. Dickson DW (2012) Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb Perspect Med 2:a009258

    Article  Google Scholar 

  11. Lopez-Valdes HE, Martinez-Coria H (2016) The role of neuroinflammation in age-related dementias. Rev Invest Clin 68:40–48

    Google Scholar 

  12. Goedert M, Spillantini MG, Del Tredici K et al (2013) 100 years of Lewy pathology. Nat Rev Neurol 9:13–24

    Article  CAS  Google Scholar 

  13. Braak H, Ghebremedhin E, Rüb U et al (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    Article  Google Scholar 

  14. Hindle JV (2010) Ageing, neurodegeneration and Parkinson’s disease. Age Ageing 39:156–161

    Article  Google Scholar 

  15. Surmeier DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18:101–113

    Article  CAS  Google Scholar 

  16. Duda J, Potschke C, Liss B (2016) Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson’s disease. J Neurochem 139 Suppl 1:156–178

    Article  Google Scholar 

  17. Damier P et al (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122:1437–1448

    Article  Google Scholar 

  18. Damier P, Ec H, Agid Y et al (1999) The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain 122:1421–1436

    Article  Google Scholar 

  19. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    Article  CAS  Google Scholar 

  20. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912

    Article  CAS  Google Scholar 

  21. Dachsel JC, Sj L, Gonzalez J et al (2007) The ups and downs of alpha-synuclein mRNA expression. Mov Disord 22:293–295

    Article  Google Scholar 

  22. Cookson MR (2009) alpha-Synuclein and neuronal cell death. Mol Neurodegener 4:9

    Article  Google Scholar 

  23. Anderegg A, Poulin JF, Awatramani R (2015) Molecular heterogeneity of midbrain dopaminergic neurons--moving toward single cell resolution. FEBS Lett 589(Pt A):3714–3726

    Article  CAS  Google Scholar 

  24. Mariani E, Frabetti F, Tarozzi A et al (2016) Meta-analysis of Parkinson’s disease transcriptome data using TRAM software: whole substantia nigra tissue and single dopamine neuron differential gene expression. PLoS One 11:e0161567

    Article  Google Scholar 

  25. Markopoulou K, Biernacka JM, Armasu SM et al (2014) Does alpha-synuclein have a dual and opposing effect in preclinical vs. clinical Parkinson’s disease? Parkinsonism Relat Disord 20:584–589

    Article  Google Scholar 

  26. Hodne K, Weltzien FA (2015) Single-cell isolation and gene analysis: pitfalls and possibilities. Int J Mol Sci 16:26832–26849

    Article  CAS  Google Scholar 

  27. Poulin JF, Zou J, DFrouin-Ouellet J et al (2014) Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep 9:930–943

    Article  CAS  Google Scholar 

  28. Baslan T, Hicks J (2014) Single cell sequencing approaches for complex biological systems. Curr Opin Genet Dev 26:59–65

    Article  CAS  Google Scholar 

  29. La Manno G, Gyllborg D, Codeluppi S et al (2016) Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167:566–580.e19

    Article  Google Scholar 

  30. Erickson HS, Albert PS, Gillespie JW et al (2009) Quantitative RT-PCR gene expression analysis of laser microdissected tissue samples. Nat Protoc 4:902–922

    Article  CAS  Google Scholar 

  31. Murray GI (2007) An overview of laser microdissection technologies. Acta Histochem 109:171–176

    Article  Google Scholar 

  32. Liss B, Roeper J (2004) Correlating function and gene expression of individual basal ganglia neurons. Trends Neurosci 27:475–481

    Article  CAS  Google Scholar 

  33. Poetschke C, Dragicevic E, Duda J et al (2015) Compensatory T-type Ca2+ channel activity alters D2-autoreceptor responses of Substantia nigra dopamine neurons from Cav1.3 L-type Ca2+ channel KO mice. Sci Rep 5:13688

    Article  Google Scholar 

  34. Dragicevic E, Poetschke C, Duda J et al (2014) Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons. Brain 137:2287–2302

    Article  Google Scholar 

  35. Krabbe S, Duda J, Schiemann J et al (2015) Increased dopamine D2 receptor activity in the striatum alters the firing pattern of dopamine neurons in the ventral tegmental area. Proc Natl Acad Sci U S A 112:E1498–E1506

    CAS  Google Scholar 

  36. Muhling T, Duda J, Weishaupt JH et al (2014) Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca(2+) transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice. Front Cell Neurosci 8:353

    Google Scholar 

  37. Grundemann J, Schlaudraff F, Liss B (2011) UV-laser microdissection and mRNA expression analysis of individual neurons from postmortem Parkinson’s disease brains. Methods Mol Biol 755:363–374

    Article  Google Scholar 

  38. Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    Article  Google Scholar 

  39. Stan AD, Ghose S, Gao XM et al (2006) Human postmortem tissue: what quality markers matter? Brain Res 1123:1–11

    Article  CAS  Google Scholar 

  40. Weis S, Llenos IC, Dulay JR et al (2007) Quality control for microarray analysis of human brain samples: the impact of postmortem factors, RNA characteristics, and histopathology. J Neurosci Methods 165:198–209

    Article  CAS  Google Scholar 

  41. Lipska BK, Deep-Soboslay A, Weickert CS et al (2006) Critical factors in gene expression in postmortem human brain: focus on studies in schizophrenia. Biol Psychiatry 60:650–658

    Article  CAS  Google Scholar 

  42. Tagliafierro L, Bonawitz K, Glenn OC et al (2016) Gene expression analysis of neurons and astrocytes isolated by laser capture microdissection from frozen human brain tissues. Front Mol Neurosci 9:72

    Article  Google Scholar 

  43. Meyronet D, Dorey A, Massoma P et al (2015) The workflow from post-mortem human brain sampling to cell microdissection: a Brain Net Europe study. J Neural Transm (Vienna) 122:975–991

    Article  Google Scholar 

  44. Trabzuni D, Ryten M, Walker R et al (2011) Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies. J Neurochem 119:275–282

    Article  CAS  Google Scholar 

  45. Koppelkamm A, Vennemann B, Lutz-Bonengel S et al (2011) RNA integrity in post-mortem samples: influencing parameters and implications on RT-qPCR assays. Int J Leg Med 125:573–580

    Article  Google Scholar 

  46. Schlaudraff F, Grundemann J, Fauler M et al (2014) Orchestrated increase of dopamine and PARK mRNAs but not miR-133b in dopamine neurons in Parkinson’s disease. Neurobiol Aging 35:2302–2315

    Article  CAS  Google Scholar 

  47. Eschbach J, von Einem B, Muller K et al (2017) Mutual exacerbation of PGC-1α deregulation and α-synuclein oligomerization. Ann Neurol 77:15–32

    Article  Google Scholar 

  48. Grundemann J, Schlaudraff F, Haeckel O et al (2008) Elevated alpha-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson’s disease. Nucleic Acids Res 36:e38

    Article  Google Scholar 

  49. Kurz A, Double KL, Lastres-Becker I et al (2010) A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice. PLoS One 5:e11464

    Article  Google Scholar 

  50. Ramirez A, Heimbach A, Grundemann J et al (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38:1184–1191

    Article  CAS  Google Scholar 

  51. Schiemann J, Schlaudraff F, Klose V et al (2012) K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nat Neurosci 15:1272–1280

    Article  CAS  Google Scholar 

  52. Kim J, Inoue K, Ishii J et al (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224

    Article  CAS  Google Scholar 

  53. Matsuda-Matsumoto H, Iwazaki T, Kashern MA et al (2007) Differential protein expression profiles in the hippocampus of human alcoholics. Neurochem Int 51:370–376

    Article  CAS  Google Scholar 

  54. McCullumsmith RE, Meador-Woodruff JH (2011) Novel approaches to the study of postmortem brain in psychiatric illness: old limitations and new challenges. Biol Psychiatry 69:127–133

    Article  Google Scholar 

  55. Preece P, Cairns NJ (2003) Quantifying mRNA in postmortem human brain: influence of gender, age at death, postmortem interval, brain pH, agonal state and inter-lobe mRNA variance. Brain Res Mol Brain Res 118:60–71

    Article  CAS  Google Scholar 

  56. Harrington CA, Winther M, Garred MM (2009) Use of bioanalyzer electropherograms for quality control and target evaluation in microarray expression profiling studies of ocular tissues. J Ocul Biol Dis Inform 2:243–249

    Article  Google Scholar 

  57. Consonni D, Bertazzi PA, Zocchetti C (1997) Why and how to control for age in occupational epidemiology. Occup Environ Med 54:772–776

    Article  CAS  Google Scholar 

  58. Snijders TAB, Bosker RJ (2011) Multilevel analysis: an introduction to basic and advanced multilevel modeling, 2nd edn. Sage, London

    Google Scholar 

  59. Eschbach J, von Einem B, Muller K et al (2015) Mutual exacerbation of peroxisome proliferator-activated receptor gamma coactivator 1alpha deregulation and alpha-synuclein oligomerization. Ann Neurol 77:15–32

    Article  CAS  Google Scholar 

  60. Liss B (2002) Improved quantitative real-time RT-PCR for expression profiling of individual cells. Nucleic Acids Res 30:e89

    Article  Google Scholar 

  61. Ortner NJ et al (2017) Lower affinity of isradipine for L-type Ca2+ channels during Substantia nigra dopamine neuron-like activity: implications for neuroprotection in Parkinson’s disease. J Neurosci 37:6761

    Article  CAS  Google Scholar 

  62. Liss B, Franz O, Sewing S et al (2001) Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. EMBO J 20:5715–5724

    Article  CAS  Google Scholar 

  63. Caguci DG (2003) Sensitivity and uncertainty analysis, Volume1: Theory. Chapman & Hall/CRC Press, New York, NY

    Book  Google Scholar 

  64. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133

    Article  Google Scholar 

Download references

Acknowledgments

We are particularly grateful to the brain donors, and the support by the German BrainNet (GA28, GA76 and GA82). We thank Falk Schlaudraff for providing most of the data shown here, Leica Microsystems for providing a UV-LMD6000 and Microdissect for providing PEN-membrane slides. This work was supported by the BMBF (NGFN 01GS08134), by the DFG (SFB497 and LI1745-1), the Austrian Science Fund (FWF SFB F4412), the Hertie Foundation, and the Alfried Krupp prize (all to BL). JD was supported by the PhD program for Molecular Medicine and the Research Training Group CEMMA (DFG) of Ulm University. JG is supported by an EMBO and Marie Curie Actions Fellowship as well as an SNF Ambizione Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Liss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Duda, J., Fauler, M., Gründemann, J., Liss, B. (2018). Cell-Specific RNA Quantification in Human SN DA Neurons from Heterogeneous Post-mortem Midbrain Samples by UV-Laser Microdissection and RT-qPCR. In: Murray, G. (eds) Laser Capture Microdissection. Methods in Molecular Biology, vol 1723. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7558-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7558-7_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7557-0

  • Online ISBN: 978-1-4939-7558-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics