Skip to main content

Fabrication and Mechanical Properties Measurements of 3D Microtissues for the Study of Cell–Matrix Interactions

  • Protocol
  • First Online:
Book cover The Surfaceome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1722))

Abstract

Cell interactions with the extracellular matrix (ECM) are critical to cell and tissue functions involving adhesion, communication, and differentiation. Three-dimensional (3D) in vitro culture systems are an important approach to mimic in vivo cell–matrix interactions for mechanobiology studies and tissue engineering applications. This chapter describes the use of engineered microtissues as 3D constructs in combination with a magnetic tissue gauge (μTUG) system to analyze tissue mechanical properties. The μTUG system is composed of poly(dimethylsiloxane) (PDMS) microwells with vertical pillars in the wells. Self-assembled microtissues containing cells and ECM gel can form between the pillars, and generate mechanical forces that deform the pillars, which provides a readout of those forces. Herein, detailed procedures for microfabrication of the PDMS μTUG system, seeding and growth of cells with ECM gels in the microwells, and measurements of the mechanical properties of the resulting microtissues via magnetic actuation of magnetic sphere-tagged μTUGs are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Chen CS, Tan J, Tien J (2004) Mechanotransduction at cell-matrix and cell-cell contacts. Annu Rev Biomed Eng 6:275–302

    Article  CAS  PubMed  Google Scholar 

  2. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz MA, Ginsberg MH (2002) Networks and crosstalk: integrin signalling spreads. Nat Cell Biol 4:E65–E68

    Article  CAS  PubMed  Google Scholar 

  4. Ciobanasu C, Faivre B, Le Clainche C (2013) Integrating actin dynamics, mechanotransduction and integrin activation: the multiple functions of actin binding proteins in focal adhesions. Eur J Cell Biol 92:339–348

    Article  CAS  PubMed  Google Scholar 

  5. Schiller HB, Fassler R (2013) Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep 14:509–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuo JC (2013) Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells. J Cell Mol Med 17:704–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wozniak MA, Chen CS (2009) Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol 10:34–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmeichel KL, Bissell MJ (2003) Modeling tissue-specific signaling and organ function in three dimensions. J Cell Sci 116:2377–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15:647–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Legant WR, Pathak A, Yang MT, Deshpande VS, McMeeking RM, Chen CS (2009) Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc Natl Acad Sci U S A 106:10097–10102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Legant WR, Chen CS, Vogel V (2012) Force-induced fibronectin assembly and matrix remodeling in a 3D microtissue model of tissue morphogenesis. Integr Biol 4:1164–1174

    Article  CAS  Google Scholar 

  12. Zhao R, Boudou T, Wang WG, Chen CS, Reich DH (2013) Decoupling cell and matrix mechanics in engineered microtissues using magnetically actuated microcantilevers. Adv Mater 25:1699–1705

    Article  CAS  PubMed  Google Scholar 

  13. Zhao R, Boudou T, Wang WG, Chen CS, Reich DH (2014) Magnetic approaches to study collective 3D cell mechanics in long-term cultures (invited). J Appl Phys 115:172616

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhao R, Chen CS, Reich DH (2014) Force-driven evolution of mesoscale structure in engineered 3D microtissues and the modulation of tissue stiffening. Biomaterials 35:5056–5064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu AS, Wang H, Copeland CR, Chen CS, Shenoy VB, Reich DH (2016) Matrix viscoplasticity and its shielding by active mechanics in a microtissue model: in situ experiments and mathematical modeling. Sci Rep 6:33919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sakar MS, Eyckmans J, Pieters R, Eberli D, Nelson BJ, Chen CS (2016) Cellular forces and matrix assembly coordinate fibrous tissue repair. Nat Commun 7:11036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu F, Zhao R, Liu AS, Metz T, Shi Y, Bose P, Reich DH (2015) A microfabricated magnetic actuation device for mechanical conditioning of arrays of 3D microtissues. Lab Chip 15:2496–2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao R, Simmons CA (2012) An improved texture correlation algorithm to measure substrate–cytoskeletal network strain transfer under large compressive strain. J Biomech 45:76–82

    Article  PubMed  Google Scholar 

  19. Sage D, Neumann FR, Hediger F, Gasser SM, Unser M (2005) Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans Image Process 14:1372–1383

    Article  PubMed  Google Scholar 

  20. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310

    Article  CAS  Google Scholar 

  21. Saltzman WM, Parkhurst MR, Parsons-Wingerter P, Zhu WH (1992) Three-dimensional cell cultures mimic tissues. Ann N Y Acad Sci 665:259–273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF Grants CMMI-1463011 (JHU) and CMMI-1462710 (BU). C.Y.H. acknowledges support from the Ministry of Science of Technology of Taiwan’s Postdoctoral Research Abroad Program grant number 105-2917-I-564-003-A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. Reich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bose, P., Huang, C.Y., Eyckmans, J., Chen, C.S., Reich, D.H. (2018). Fabrication and Mechanical Properties Measurements of 3D Microtissues for the Study of Cell–Matrix Interactions. In: Boheler, K., Gundry, R. (eds) The Surfaceome. Methods in Molecular Biology, vol 1722. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7553-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7553-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7551-8

  • Online ISBN: 978-1-4939-7553-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics