Skip to main content

Single-Unit Extracellular Recording from the Cerebellum During Eyeblink Conditioning in Head-Fixed Mice

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 134))

Abstract

This chapter presents a method for performing in vivo single-unit extracellular recordings and optogenetics during an associative, cerebellum-dependent learning task in head-fixed mice. The method uses a cylindrical treadmill system that reduces stress in the mice by allowing them to walk freely, yet it provides enough stability to maintain single-unit isolation of neurons for tens of minutes to hours. Using this system, we have investigated sensorimotor coding in the cerebellum while mice perform learned skilled movements.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Humphrey DR, Schmidt EM (1990) Extracellular single-unit recording methods. In: Boulton AA, Baker GB, Vanderwolf CH (eds) Neurophysiol. Tech. Appl. to Neural Syst. Humana Press, Totowa, NJ, pp 1–64

    Google Scholar 

  2. Bryant JL, Roy S, Heck DH (2009) A technique for stereotaxic recordings of neuronal activity in awake, head-restrained mice. J Neurosci Methods 178:75–79. https://doi.org/10.1016/j.jneumeth.2008.11.014

    Article  PubMed  Google Scholar 

  3. Schonewille M, Khosrovani S, Winkelman BHJ et al (2006) Purkinje cells in awake behaving animals operate at the upstate membrane potential. Nat Neurosci 9:459–61; author reply 461. https://doi.org/10.1038/nn0406-459

    Article  CAS  PubMed  Google Scholar 

  4. Goossens HHLM, Hoebeek FE, Van Alphen AM et al (2004) Simple spike and complex spike activity of floccular Purkinje cells during the optokinetic reflex in mice lacking cerebellar long-term depression. Eur J Neurosci 19:687–697. https://doi.org/10.1111/j.1460-9568.2003.03173.x

    Article  CAS  PubMed  Google Scholar 

  5. Cheron G, Gall D, Servais L et al (2004) Inactivation of calcium-binding protein genes induces 160 Hz oscillations in the cerebellar cortex of alert mice. J Neurosci 24:434–441. https://doi.org/10.1523/JNEUROSCI.3197-03.2004

    Article  CAS  PubMed  Google Scholar 

  6. White JJ, Lin T, Brown AM et al (2016) An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice. J Neurosci Methods 262:21–31. https://doi.org/10.1016/j.jneumeth.2016.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  7. Heiney SA, Kim J, Augustine GJ, Medina JF (2014) Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J Neurosci 34:2321–2330. https://doi.org/10.1523/JNEUROSCI.4547-13.2014

    Article  PubMed  PubMed Central  Google Scholar 

  8. Paré WP, Glavin GB (1986) Restraint stress in biomedical research: a review. Neurosci Biobehav Rev 10:339–370

    Article  PubMed  Google Scholar 

  9. Li S, Fan Y-X, Wang W, Tang Y-Y (2012) Effects of acute restraint stress on different components of memory as assessed by object-recognition and object-location tasks in mice. Behav Brain Res 227:199–207. https://doi.org/10.1016/j.bbr.2011.10.007

    Article  PubMed  Google Scholar 

  10. Boele H-J, Koekkoek SKE, De Zeeuw CI (2010) Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model. Front Cell Neurosci 3:19. https://doi.org/10.3389/neuro.03.019.2009

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chettih SN, McDougle SD, Ruffolo LI, Medina JF (2011) Adaptive timing of motor output in the mouse: the role of movement oscillations in eyelid conditioning. Front Integr Neurosci 5:72. https://doi.org/10.3389/fnint.2011.00072

    Article  PubMed  PubMed Central  Google Scholar 

  12. Heiney SA, Wohl MP, Chettih SN et al (2014) Cerebellar-dependent expression of motor learning during Eyeblink conditioning in head-fixed mice. J Neurosci 34:14845–14853. https://doi.org/10.1523/JNEUROSCI.2820-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hilgard ER, Marquis DG (1935) Acquisition, extinction, and retention of conditioned lid responses to light in dogs. J Comp Psychol 19:29–58. https://doi.org/10.1037/h0057836

  14. Schneiderman N, Fuentes I, Gormezano I (1962) Acquisition and extinction of the classically conditioned eyelid response in the albino rabbit. Science 136:650–652

    Article  CAS  PubMed  Google Scholar 

  15. Chen L, Bao S, Lockard JM et al (1996) Impaired classical eyeblink conditioning in cerebellar-lesioned and Purkinje cell degeneration (pcd) mutant mice. J Neurosci 16:2829–2838

    CAS  PubMed  Google Scholar 

  16. Kim JJ, Thompson RF (1997) Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends Neurosci 20:177–181

    Article  CAS  PubMed  Google Scholar 

  17. McCormick DA, Thompson RF (1984) Cerebellum: essential involvement in the classically conditioned eyelid response. Science 223:296–299

    Article  CAS  PubMed  Google Scholar 

  18. Schonewille M, Gao Z, Boele H-J et al (2011) Reevaluating the role of LTD in cerebellar motor learning. Neuron 70:43–50. https://doi.org/10.1016/j.neuron.2011.02.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aiba A, Kano M, Chen C et al (1994) Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79:377–388

    Article  CAS  PubMed  Google Scholar 

  20. Shibuki K, Gomi H, Chen L et al (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16:587–599. https://doi.org/10.1016/S0896-6273(00)80078-1

    Article  CAS  PubMed  Google Scholar 

  21. LeChasseur Y, Dufour S, Lavertu G et al (2011) A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat Methods 8:319–325. https://doi.org/10.1038/nmeth.1572

    Article  CAS  PubMed  Google Scholar 

  22. Paxinos G, Franklin KBJ (2013) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. Elsevier Academic Press, London

    Google Scholar 

  23. Siegel JJ, Taylor W, Gray R et al (2015) Trace eyeblink conditioning in mice is dependent upon the dorsal medial prefrontal cortex, cerebellum, and amygdala: behavioral characterization and functional circuitry. eNeuro 2:1–29. https://doi.org/10.1523/ENEURO.0051-14.2015

    Article  Google Scholar 

  24. Sakamoto T, Endo S (2010) Amygdala, deep cerebellar nuclei and red nucleus contribute to delay eyeblink conditioning in C57BL/6 mice. Eur J Neurosci 32:1537–1551. https://doi.org/10.1111/j.1460-9568.2010.07406.x

    Article  PubMed  Google Scholar 

  25. Kehoe EJ, White NE (2002) Extinction revisited: similarities between extinction and reductions in US intensity in classical conditioning of the rabbit’s nictitating membrane response. Anim Learn Behav 30:96–111. https://doi.org/10.3758/BF03192912

    Article  PubMed  Google Scholar 

  26. Eccles J, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Heidelberg

    Book  Google Scholar 

  27. Miles FA, Fuller JH, Braitman DJ, Dow BM (1980) Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. J Neurophysiol 43:1437–1476

    CAS  PubMed  Google Scholar 

  28. Lisberger SG, Fuchs AF (1978) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J Neurophysiol 41:733–763

    CAS  PubMed  Google Scholar 

  29. Thach WT (1968) Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol 31:785–797

    CAS  PubMed  Google Scholar 

  30. Ohmae S, Medina JF (2015) Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nat Neurosci 18:1798–1803. https://doi.org/10.1038/nn.4167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Granit R, Phillips CG (1956) Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J Physiol 133:520–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Van Dijck G, Van Hulle MM, Heiney SA et al (2013) Probabilistic identification of cerebellar cortical neurones across species. PLoS One 8:e57669. https://doi.org/10.1371/journal.pone.0057669

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ruigrok TJH, Hensbroek RA, Simpson JI (2011) Spontaneous activity signatures of morphologically identified interneurons in the vestibulocerebellum. J Neurosci 31:712–724. https://doi.org/10.1523/JNEUROSCI.1959-10.2011

    Article  CAS  PubMed  Google Scholar 

  34. Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10:670–681. https://doi.org/10.1038/nrn2698

    Article  CAS  PubMed  Google Scholar 

  35. Garwicz M, Jorntell H, Ekerot CF (1998) Cutaneous receptive fields and topography of mossy fibres and climbing fibres projecting to cat cerebellar C3 zone. J Physiol 512:277–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mostofi A, Holtzman T, Grout AS et al (2010) Electrophysiological localization of eyeblink-related microzones in rabbit cerebellar cortex. J Neurosci 30:8920–8934. https://doi.org/10.1523/JNEUROSCI.6117-09.2010

    Article  CAS  PubMed  Google Scholar 

  37. Jörntell H, Ekerot CF, Garwicz M, Luo XL (2000) Functional organization of climbing fibre projection to the cerebellar anterior lobe of the rat. J Physiol 522(Pt 2):297–309

    Article  PubMed  PubMed Central  Google Scholar 

  38. Uusisaari MY, De Schutter E (2011) The mysterious microcircuitry of the cerebellar nuclei. J Physiol 589:3441–3457. https://doi.org/10.1113/jphysiol.2010.201582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dow RS, Moruzzi G (1958) The physiology and pathology of the cerebellum. University of Minnesota Press, Minneapolis, MN

    Google Scholar 

  40. Ekerot CF, Jörntell H, Garwicz M (1995) Functional relation between corticonuclear input and movements evoked on microstimulation in cerebellar nucleus interpositus anterior in the cat. Exp Brain Res 106:365–376. https://doi.org/10.1007/BF00231060

    Article  CAS  PubMed  Google Scholar 

  41. Hesslow G (1994) Correspondence between climbing fibre input and motor output in eyeblink-related areas in cat cerebellar cortex. J Physiol 476:229–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kravitz AV, Owen SF, Kreitzer AC (2013) Optogenetic identification of striatal projection neuron subtypes during in vivo recordings. Brain Res 1511:21–32. https://doi.org/10.1016/j.brainres.2012.11.018

    Article  CAS  PubMed  Google Scholar 

  43. Smear M, Shusterman R, O’Connor R et al (2011) Perception of sniff phase in mouse olfaction. Nature 479:397–400. https://doi.org/10.1038/nature10521

    Article  CAS  PubMed  Google Scholar 

  44. Lee S-H, Kwan AC, Zhang S et al (2012) Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488:379–383. https://doi.org/10.1038/nature11312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee KH, Mathews PJ, Reeves AMB et al (2015) Circuit mechanisms underlying motor memory formation in the cerebellum. Neuron:1–12. https://doi.org/10.1016/j.neuron.2015.03.010

  46. Zhao S, Ting JT, Atallah H et al (2011) Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 8:745–752. https://doi.org/10.1038/nMeth.1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kozai TDY, Vazquez AL (2015) Photoelectric artefact from optogenetics and imaging on microelectrodes and bioelectronics: new challenges and opportunities. J Mater Chem B Mater Biol Med 3:4965–4978. https://doi.org/10.1039/C5TB00108K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lewicki MS (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Network 9:R53–R78. https://doi.org/10.1088/0954-898X/9/4/001

    Article  CAS  PubMed  Google Scholar 

  49. Rey HG, Pedreira C, Quian Quiroga R (2015) Past, present and future of spike sorting techniques. Brain Res Bull 119:106–117. https://doi.org/10.1016/j.brainresbull.2015.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mauk MD, Ruiz BP (1992) Learning-dependent timing of Pavlovian eyelid responses: differential conditioning using multiple interstimulus intervals. Behav Neurosci 106:666–681

    Article  CAS  PubMed  Google Scholar 

  51. Domingo JA, Gruart A, Delgado-García JM (1997) Quantal organization of reflex and conditioned eyelid responses. J Neurophysiol 78:2518–2530

    CAS  PubMed  Google Scholar 

  52. Gruart A, Blazquez PM, Delgado-García JM (1995) Kinematics of spontaneous, reflex, and conditioned eyelid movements in the alert cat. J Neurophysiol 74:226–248

    CAS  PubMed  Google Scholar 

  53. Powell DA, Churchwell J, Burriss L (2005) Medial prefrontal lesions and Pavlovian eyeblink and heart rate conditioning: effects of partial reinforcement on delay and trace conditioning in rabbits (Oryctolagus Cuniculus). Behav Neurosci 119:180–189. https://doi.org/10.1037/0735-7044.119.1.180

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier F. Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Heiney, S.A., Ohmae, S., Kim, O.A., Medina, J.F. (2018). Single-Unit Extracellular Recording from the Cerebellum During Eyeblink Conditioning in Head-Fixed Mice. In: Sillitoe, R. (eds) Extracellular Recording Approaches. Neuromethods, vol 134. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7549-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7549-5_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7548-8

  • Online ISBN: 978-1-4939-7549-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics