Skip to main content

Surgical and Electrophysiological Techniques for Single-Neuron Recordings in Human Epilepsy Patients

  • Protocol
  • First Online:
Extracellular Recording Approaches

Part of the book series: Neuromethods ((NM,volume 134))

Abstract

Extracellular recordings of single-neuron activity in awake behaving animals are one of the principal techniques used to decipher the neuronal basis of behavior. While only routinely possible in animals, rare clinical procedures make it possible to perform such recordings in awake human beings. Such human single-neuron recordings have started to reveal insights into the neural mechanisms of learning, memory, cognition, attention, and decision-making in humans. Here, we describe in detail the methods we developed to perform such recordings in patients undergoing invasive monitoring for localization of epileptic seizures. We describe three aspects: the neurosurgical procedure to implant depth electrodes with embedded microwires, electrophysiological methods to perform experiments in the clinical settings, and data processing steps to isolate single neurons. Together, this chapter provides a comprehensive overview of the methods needed to perform single-neuron recordings in humans during psychophysical tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    We use the Framelink® Stereotactic Planning Software suite (Stealth Station, Medtronic) for planning at our institution. There are however many alternative solutions that are just as reliable (e.g., Brain lab, Radionics).

References

  1. Mullin JP, Shriver M, Alomar S, Najm I, Bulacio J, Chauvel P, Gonzalez-Martinez J (2016) Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications. Epilepsia 57(3):386–401

    Article  PubMed  Google Scholar 

  2. Fried I, Rutishauser U, Cerf M, Kreiman G (2014) Single neuron studies of the human brain: probing cognition. MIT Press, Boston

    Book  Google Scholar 

  3. Fried I, Wilson CL, Maidment NT, Engel J, Behnke E, Fields TA, MacDonald KA, Morrow JW, Ackerson L (1999) Cerebral microdialysis combined with single-neuron and electroencephalographic recording in neurosurgical patients—technical note. J Neurosurg 91(4):697–705

    Article  CAS  PubMed  Google Scholar 

  4. Schmidt RF, Wu C, Lang MJ, Soni P, Williams KA Jr, Boorman DW, Evans JJ, Sperling MR, Sharan AD (2016) Complications of subdural and depth electrodes in 269 patients undergoing 317 procedures for invasive monitoring in epilepsy. Epilepsia 57(10):1697–1708

    Article  PubMed  Google Scholar 

  5. Hefft S, Brandt A, Zwick S, von Elverfeldt D, Mader I, Cordeiro J, Trippel M, Blumberg J, Schulze-Bonhage A (2013) Safety of hybrid electrodes for single-neuron recordings in humans. Neurosurgery 73(1):78–85; discussion 85

    Article  PubMed  Google Scholar 

  6. Mehta AD, Labar D, Dean A, Harden C, Hosain S, Pak J, Marks D, Schwartz TH (2005) Frameless stereotactic placement of depth electrodes in epilepsy surgery. J Neurosurg 102(6):1040–1045

    Article  PubMed  Google Scholar 

  7. Misra A, Burke JF, Ramayya AG, Jacobs J, Sperling MR, Moxon KA, Kahana MJ, Evans JJ, Sharan AD (2014) Methods for implantation of micro-wire bundles and optimization of single/multi-unit recordings from human mesial temporal lobe. J Neural Eng 11(2):026013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mamelak A (2014) Ethical and practical considerations for human microelectrode recording studies. In: Fried I et al (eds) Single neuron studies of the human brain. MIT Press, Boston

    Google Scholar 

  9. Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442

    Article  CAS  PubMed  Google Scholar 

  10. Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436

    Article  CAS  PubMed  Google Scholar 

  11. Cornelissen FW, Peters EM, Palmer J (2002) The Eyelink Toolbox: eye tracking with MATLAB and the Psychophysics Toolbox. Behav Res Methods Instrum Comput 34(4):613–617

    Article  PubMed  Google Scholar 

  12. Rutishauser U, Kotowicz A, Laurent G (2013) A method for closed-loop presentation of sensory stimuli conditional on the internal brain-state of awake animals. J Neurosci Methods 215(1):139–155

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gibson S, Judy JW, Markovic D (2012) Spike sorting the first step in decoding the brain. IEEE Signal Process Mag 29(1):124–143

    Article  Google Scholar 

  14. Lewicki MS (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Network 9(4):R53–R78

    Article  CAS  PubMed  Google Scholar 

  15. Rutishauser U, Cerf M, Kreiman G (2014) Data analysis techniques for human microwire recordings: spike detection and sorting, decoding, relation between neurons and local field potential. In: Fried I et al (eds) Single neuron studies of the human brain. MIT Press, Boston, pp 59–98

    Google Scholar 

  16. Quiroga RQ (2009) What is the real shape of extracellular spikes? J Neurosci Methods 177(1):194–198

    Article  Google Scholar 

  17. Bankman IN, Johnson KO, Schneider W (1993) Optimal detection, classification, and superposition resolution in neural waveform recordings. IEEE Trans Biomed Eng 40(8):836–841

    Article  CAS  PubMed  Google Scholar 

  18. Rutishauser U, Schuman EM, Mamelak AN (2006) Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings, in vivo. J Neurosci Methods 154(1):204–224

    Article  PubMed  Google Scholar 

  19. Quiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16(8):1661–1687

    Article  PubMed  Google Scholar 

  20. Rossant C, Kadir SN, Goodman DF, Schulman J, Hunter ML, Saleem AB, Grosmark A, Belluscio M, Denfield GH, Ecker AS, Tolias AS, Solomon S, Buzsaki G, Carandini M, Harris KD (2016) Spike sorting for large, dense electrode arrays. Nat Neurosci 19(4):634–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rutishauser U, Ross IB, Mamelak AN, Schuman EM (2010) Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 464(7290):903–907

    Article  CAS  PubMed  Google Scholar 

  22. Kaminski J, Sullivan S, Chung JM, Ross IB, Mamelak AN, Rutishauser U (2017) Persistently active neurons in human medial frontal and medial temporal lobe support working memory. Nat Neurosci 20(4):590–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pouzat C, Mazor O, Laurent G (2002) Using noise signature to optimize spike-sorting and to assess neuronal classification quality. J Neurosci Methods 122(1):43–57

    Article  PubMed  Google Scholar 

  24. Rutishauser U, Ye S, Koroma M, Tudusciuc O, Ross IB, Chung JM, Mamelak AN (2015) Representation of retrieval confidence by single neurons in the human medial temporal lobe. Nat Neurosci 18(7):1041–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hill DN, Mehta SB, Kleinfeld D (2011) Quality metrics to accompany spike sorting of extracellular signals. J Neurosci 31(24):8699–8705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmitzer-Torbert N, Jackson J, Henze D, Harris K, Redish A (2005) Quantitative measures of cluster quality for use in extracellular recordings. Neuroscience 131(1):1–11

    Article  CAS  PubMed  Google Scholar 

  27. Minxha J, Mosher C, Morrow JK, Mamelak AN, Adolphs R, Gothard KM, Rutishauser U (2017) Fixations gate species-specific responses to free viewing of faces in the human and macaque amygdala. Cell Rep 18(4):878–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Adolphs R (2010) What does the amygdala contribute to social cognition? Ann N Y Acad Sci 1191(1):42–61

    Article  PubMed  PubMed Central  Google Scholar 

  29. Paton JJ, Belova MA, Morrison SE, Salzman CD (2006) The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439(7078):865–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsao DY, Freiwald WA, Tootell RB, Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311(5761):670–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rutishauser U, Tudusciuc O, Wang S, Mamelak AN, Ross IB, Adolphs R (2013) Single-neuron correlates of atypical face processing in autism. Neuron 80(4):887–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rutishauser U, Tudusciuc O, Neumann D, Mamelak AN, Heller AC, Ross IB, Philpott L, Sutherling WW, Adolphs R (2011) Single-unit responses selective for whole faces in the human amygdala. Curr Biol 21(19):1654–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rutishauser U, Mamelak AN, Adolphs R (2015) The primate amygdala in social perception—insights from electrophysiological recordings and stimulation. Trends Neurosci 38(5):295–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Adolphs R, Gosselin F, Buchanan TW, Tranel D, Schyns P, Damasio AR (2005) A mechanism for impaired fear recognition after amygdala damage. Nature 433(7021):68–72

    Article  CAS  PubMed  Google Scholar 

  35. Dal Monte O, Costa VD, Noble PL, Murray EA, Averbeck BB (2014) Amygdala lesions in rhesus macaques decrease attention to threat. Nat Commun 6:10161–10161

    Article  Google Scholar 

  36. Adolphs R, Tranel D, Damasio AR (1998) The human amygdala in social judgment. Nature 393(6684):470–474

    Article  CAS  PubMed  Google Scholar 

  37. Tyszka, MJ, Pauli, WM (2016) A high resolution in vivo MRI atlas of the adult human amygdaloid complex. Submitted for publication

    Google Scholar 

  38. Mormann F, Kornblith S, Quiroga RQ, Kraskov A, Cerf M, Fried I, Koch C (2008) Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe. J Neurosci 28(36):8865–8872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harris KD, Henze DA, Csicsvari J, Hirase H, Buzsaki G (2000) Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J Neurophysiol 84(1):401–414

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ueli Rutishauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Minxha, J., Mamelak, A.N., Rutishauser, U. (2018). Surgical and Electrophysiological Techniques for Single-Neuron Recordings in Human Epilepsy Patients. In: Sillitoe, R. (eds) Extracellular Recording Approaches. Neuromethods, vol 134. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7549-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7549-5_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7548-8

  • Online ISBN: 978-1-4939-7549-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics