Skip to main content

Recording Extracellular Activity in the Developing Cerebellum of Behaving Rats

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 134))

Abstract

The in vivo extracellular activity of the cerebellum has been intensively investigated in adult animals to understand its roles in learning and memory and sensorimotor integration. Here we describe a method for studying extracellular activity in the cerebellum of unanesthetized, behaving infant rodents over the first 2 postnatal weeks, a time of substantial cerebellar circuit development. The study of extracellular activity during cerebellar development in behaving infants provides a unique opportunity to relate neural activity not only to cerebellar circuit development but to behavioral development as well. We propose that studying extracellular neural activity in the developing cerebellum provides a model system for examining the complex interactions between behavior and neural activity and how they contribute together to functional neural circuit development.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Addison WHF (1911) The development of the Purkinje cells and of the cortical layers in the cerebellum of the albino rat. J Comp Neurol 21:459–486

    Article  Google Scholar 

  2. Altman J (1972) Postnatal development of the cerebellar cortex in the rat I. The external germinal layer and the transitional molecular layer. J Comp Neurol 145:353–398

    Article  CAS  PubMed  Google Scholar 

  3. Altman J (1972) Postnatal development of the cerebellar cortex in the rat II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145:399–464

    Article  CAS  PubMed  Google Scholar 

  4. Altman J (1972) Postnatal development of the cerebellar cortex in the rat III. Maturation of the components of the granular layer. J Comp Neurol 145:465–514

    Article  CAS  PubMed  Google Scholar 

  5. Freeman JH (2014) The ontogeny of associative cerebellar learning. In: Mauk MD (ed) International review of neurobiology: Cerebellar conditioning and learning. Elsevier, Oxford, pp 53–71

    Chapter  Google Scholar 

  6. Hashimoto K et al (2009) Translocation of a “winner” climbing fiber to the Purkinje cell dendrite and subsequent elimination of “losers” from the soma in developing cerebellum. Neuron 63:106–118

    Article  CAS  PubMed  Google Scholar 

  7. McKay BE, Turner RW (2005) Physiological and morphological development of the rat. J Physiol 567:829–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shimono T, Nosaka S, Sasaki K (1976) Electrophysiological study on the postnatal development of neuronal mechanisms in the rat cerebellar cortex. Brain Res 108:279–294

    Article  CAS  PubMed  Google Scholar 

  9. Crepel F (1974) Excitatory and inhibitory processes acting upon cerebellar Purkinje cells during maturation in the rat; Influence of hypothyroidism. Exp Brain Res 20:403–420

    Article  CAS  PubMed  Google Scholar 

  10. Gardette R et al (1985) Electrophysiological studies on the postnatal development of intracerebellar nuclei neurons in rat cerebellar slices maintained in vitro. I. Postsynaptic potentials. Dev Brain Res 19:47–55

    Article  Google Scholar 

  11. Kalinovsky A et al (2011) Development of axon-target specificity of ponto-cerebellar afferents. PLoS Biol. https://doi.org/10.1371/journal.pbio.1001013

  12. Crepel F (1971) Maturation of climbing fiber responses in the rat. Brain Res 35:272–276

    Article  CAS  PubMed  Google Scholar 

  13. Crepel F, Mariani J, Delhaye-Bouchaud N (1976) Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J Neurobiol 7:567–578

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto K, Kano M (2005) Postnatal development and synapse elimination of climbing fiber to Purkinje cell projection in the cerebellum. Neurosci Res 53:221–228

    Article  PubMed  Google Scholar 

  15. Kuwako K-I et al (2014) Cadherin-7 regulates mossy fiber connectivity in the cerebellum. Cell Rep 9:311–323

    Article  CAS  PubMed  Google Scholar 

  16. Woodward DJ, Hoffer BJ, Lapham LW (1969) Postnatal development of electrical and enzyme histochemical activity in Purkinje cells. Exp Neurol 23:120–139

    Article  CAS  PubMed  Google Scholar 

  17. Puro DG, Woodward DJ (1977) Maturation of evoked climbing fiber input to rat cerebellar Purkinje cells (I.) Exp Brain Res 28:85–100

    CAS  PubMed  Google Scholar 

  18. Puro DG, Woodward DJ (1977) Maturation of evoked mossy fiber input to rat cerebellar Purkinje cells (II). Exp Brain Res 28:427–441

    CAS  PubMed  Google Scholar 

  19. Gardette R et al (1985) Electrophysiological studies on the postnatal development of intracerebellar nuclei neurons in rat cerebellar slices maintained in vitro. II. Membrane conductances. Dev Brain Res 20:97–106

    Article  Google Scholar 

  20. Sillitoe RV, Joyner AL (2007) Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 23:549–577

    Article  CAS  PubMed  Google Scholar 

  21. Wang VY, Zoghbi HY (2001) Genetic regulation of cerebellar development. Nat Rev Neurosci 2:484–491

    Article  CAS  PubMed  Google Scholar 

  22. Hashimoto K, Kano M (2013) Synapse elimination in the developing cerebellum. Cell Mol Life Sci 70:4667–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bosman LWJ et al (2008) Homosynaptic long-term synaptic potentiation of the “winner” climbing fiber synapse in developing Purkinje cells. J Neurosci 28:798–807

    Article  CAS  PubMed  Google Scholar 

  24. Kakizawa S et al (2000) Critical period for activity-dependent synapse elimination in developing cerebellum. J Neurosci 20:4954–4951

    CAS  PubMed  Google Scholar 

  25. Kano M, Hashimoto K (2012) Activity-dependent maturation of climbing fiber to Purkinje cell synapses during postnatal cerebellar development. Cerebellum 11:449–450

    Article  PubMed  Google Scholar 

  26. Lorenzetto E et al (2009) Genetic perturbation of postsynaptic activity regulates synapse elimination in developing cerebellum. PNAS 106:16475–16480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Watanabe M, Kano M (2011) Climbing fiber synapse elimination in cerebellar Purkinje cells. Eur J Neurosci 34:1697–1710

    Article  PubMed  Google Scholar 

  28. Wang SS-H, Kloth AD, Badura A (2014) The cerebellum, sensitive periods, and autism. Neuron 83:518–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arancillo M et al (2015) In vivo analysis of Purkinje cell firing properties during postnatal mouse development. J Neurophysiol 113:578–591

    Article  PubMed  Google Scholar 

  30. Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9:304–313

    Article  CAS  PubMed  Google Scholar 

  31. Shevelkin AV, Ihenatu C, Pletnikov MV (2014) Pre-clinical models of neurodevelopmental disorders: Focus on the cerebellum. Rev Neurosci 25:177–197

    Article  PubMed  PubMed Central  Google Scholar 

  32. Blumberg MS et al (2015) A valuable and promising method for recording brain activity in behaving newborn rodents. Dev Psychobiol 57:506–517

    Article  PubMed  PubMed Central  Google Scholar 

  33. Seelke AMH, Blumberg MS (2005) The microstructure of active and quiet sleep as cortical delta activity emerges in infant rats. Sleep 31:691–699

    Article  Google Scholar 

  34. Ruigrok TJH, Hensbroek RA, Simpson RI (2011) Spontaneous activity signatures of morphologically identified interneurons in the vestibulocerebellum. J Neurosci 31:712–724

    Article  CAS  PubMed  Google Scholar 

  35. Del Rio-Bermudez C, Sokoloff G, Blumberg MS (2015) Sensorimotor processing in the newborn rat red nucleus during active sleep. J Neurosci 35:8322–8332

    Article  PubMed  PubMed Central  Google Scholar 

  36. Del Rio-Bermudez C et al (2016) Spontaneous activity and functional connectivity in the developing cerebellorubral system. J Neurophysiol 116:1316–1327

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tiriac A, Blumberg MS (2016) Gating of reafference in the external cuneate nucleus during self-generated movements in wake but not sleep. Elife. https://doi.org/10.7554/eLife.18749.

  38. An S, Kilb W, Luhmann HJ (2014) Sensory-evoked and spontaneous gamma and spindle bursts in neonatal rat motor cortex. J Neurosci 34:10870–10883

    Article  PubMed  Google Scholar 

  39. Tiriac A, Rio-Bermudez CD, Blumberg MS (2014) Self-generated movements with “unexpected” sensory consequences. Curr Biol 24:2136–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kummer M et al (2016) Column-like CA2+ clusters in the mouse neonatal neocortex reveled by three-dimensional two-photon CA2+ imagin in vivo. Neuroimage 138:64–75

    Article  CAS  PubMed  Google Scholar 

  41. Luhmann HJ (2016) Review of imaging network activities in developing rodent cerebral cortex in vivo. Neurophoton. https://doi.org/10.1117/1.NPh.4.3.031202

  42. Tiriac A, Uitermarkt BD, Fanning AS, Sokoloff G, Blumberg MS (2012) Rapid whisker movements in sleeping newborn rats. Curr Biol 22:2075–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heiney SA et al (2014) Cerebellar-dependent expression of motor learning during eyeblink conditioning in head-fixed mice. J Neurosci 34:14845–14853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alberts JR, Cramer CP (1988) Ecology and experience: Sources of means and meaning of developmental change. In: Blass EM (ed) Developmental psychobiology and behavioral ecology. Springer, New York, pp 1–39

    Google Scholar 

  45. Akhmetshina D et al (2016) The nature of the sensory input to the neonatal rat barrel cortex. J Neurosci 36:9922–9932

    Article  CAS  PubMed  Google Scholar 

  46. Stelzner DJ (1971) The normal postnatal development of synaptic end-feet in the lumbosacral spinal cord and of responses in the hind limbs of the albino rat. Exp Neurol 31:331–357

    Article  Google Scholar 

  47. Blatchley BJ, Cooper WA, Coleman JR (1987) Development of auditory brainstem response to tone pip stimuli in the rat. Dev Brain Res 32:75–84

    Article  Google Scholar 

  48. Blumberg MS et al (2005) Dynamics of sleep-wake cyclicity in developing rats. PNAS 102:14860–14864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Routtenberg A, Strop M, Jerden J (1978) Response of the infant rat to light prior to eyelid opening: mediation by the superior colliculus. Dev Psychobiol 11:469–478

    Article  CAS  PubMed  Google Scholar 

  50. Sokoloff G, Uitermarkt BD, Blumberg MS (2015) REM sleep twitches rouse nascent cerebellar circuits: implications for sensorimotor development. Dev Neurobiol 75:1140–1153

    Article  PubMed  Google Scholar 

  51. Sokoloff G et al (2015) Twitch-related and rhythmic activation of the developing cerebellar cortex. J Neurophysiol 114:1746–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Canto CB, Witter L, De Zeeuw CI (2016) Whole-cell properties of cerebellar nuclei neurons in vivo. PLoS One. https://doi.org/10.1371/journal.pone.0165887

  53. van Beugen BJ, Gao Z, Boele H-J, Hoebeek F, De Zeeuw CI (2013) High frequency burst firing of granule cells ensures transmission at the parallel to Purkinje cell synapse at the cost of temporal coding. Front Neural Circuit. https://doi.org/10.3389/fncir.2013.00095

  54. Mauk MD (1997) Roles of cerebellar cortex and nuclei in motor learning: contradictions or clues? Neuron 18:343–346

    Article  CAS  PubMed  Google Scholar 

  55. Lee KH et al (2015) Circuit mechanisms underlying motor memory formation in the cerebellum. Neuron 86:529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Perciavalle V et al (2013) Consensus paper: current views on the role of cerebellar interpositus nucleus in movement control and emotion. Cerebellum 12:738–757

    Article  PubMed  Google Scholar 

  57. Freeman JH, Nicholson DA (2000) Developmental changes in eye-blink conditioning and neuronal activity in the cerebellar interpositus nucleus. J Neurosci 20:813–819

    CAS  PubMed  Google Scholar 

  58. Altman J, Sudarshan K (1975) Postnatal development of locomotion in the laboratory rat. Anim Behav 23:896–920

    Article  CAS  PubMed  Google Scholar 

  59. Jouvet-Mounier D, Astic L, Lacote D (1969) Ontogenesis of the states of sleep in rat, cat, and guinea pig during the first postnatal month. Dev Psychobiol 2:216–239

    Article  Google Scholar 

  60. Gramsbergen A, Schwartze P, Prechtl HFR (1970) The postnatal development of behavioral states in the rat. Dev Psychobiol 3:267–280

    Article  CAS  PubMed  Google Scholar 

  61. Blumberg MS, Marques HG, Iida F (2013) Twitching in sensorimotor development from sleeping rats to robots. Curr Biol 23:R532–R537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Petersson P et al (2003) Spontaneous muscle twitches during sleep guide spinal self-organization. Nature 424:72–75

    Article  CAS  PubMed  Google Scholar 

  63. Khazipov R et al (2004) Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432:758–761

    Article  CAS  PubMed  Google Scholar 

  64. Mohns EJ, Blumberg MS (2008) Synchronous bursts of neuronal activity in the developing hippocampus: modulation by active sleep and association with emerging gamma and theta rhythms. J Neurosci 28:10134–10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mohns EJ, Blumberg MS (2010) Neocortical activation of the hippocampus during sleep in infant rats. J Neurosci 30:3438–3449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roffwarg HP, Muzio JN, Dement WC (1966) Ontogenetic development of the human sleep-dream cycle. Science 152:604–619

    Article  CAS  PubMed  Google Scholar 

  67. Ackman JB, Burbridge TJ, Crair MC (2012) Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490:219–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Madisen L et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Campolattaro MM, Freeman JH (2008) Eyeblink conditioning in 12-day-old rats using pontine stimulation as the conditioned stimulus. PNAS 105:8120–8123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Goldsberry ME, Elkin ME, Freeman JH (2014) Sensory system development influences the ontogeny of eyeblink conditioning. Dev Psychobiol 56:1244–1251

    PubMed  PubMed Central  Google Scholar 

  71. Goldsberry ME, Freeman JH (2016) Sensory system development influences the ontogeny of trace eyeblink conditioning. Dev Psychobiol. https://doi.org/10.1002/dev.21468

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greta Sokoloff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sokoloff, G., Blumberg, M.S. (2018). Recording Extracellular Activity in the Developing Cerebellum of Behaving Rats. In: Sillitoe, R. (eds) Extracellular Recording Approaches. Neuromethods, vol 134. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7549-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7549-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7548-8

  • Online ISBN: 978-1-4939-7549-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics