Skip to main content

Measuring mRNA Decay in Budding Yeast Using Single Molecule FISH

  • Protocol
  • First Online:
mRNA Decay

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1720))

Abstract

Cellular mRNA levels are determined by the rates of mRNA synthesis and mRNA decay. Typically, mRNA degradation kinetics are measured on a population of cells that are either chemically treated or genetically engineered to inhibit transcription. However, these manipulations can affect the mRNA decay process itself by inhibiting regulatory mechanisms that govern mRNA degradation, especially if they occur on short time-scales. Recently, single molecule fluorescent in situ hybridization (smFISH) approaches have been implemented to quantify mRNA decay rates in single, unperturbed cells. Here, we provide a step-by-step protocol that allows quantification of mRNA decay in single Saccharomyces cerevisiae using smFISH. Our approach relies on fluorescent labeling of single cytoplasmic mRNAs and nascent mRNAs found at active sites of transcription, coupled with mathematical modeling to derive mRNA half-lives. Commercially available, single-stranded smFISH DNA oligonucleotides (smFISH probes) are used to fluorescently label mRNAs followed by the quantification of cellular and nascent mRNAs using freely available spot detection algorithms. Our method enables quantification of mRNA decay of any mRNA in single, unperturbed yeast cells and can be implemented to quantify mRNA turnover in a variety of cell types as well as tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Parker R, Sheth U (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25(5):635–646. https://doi.org/10.1016/j.molcel.2007.02.011

    Article  CAS  PubMed  Google Scholar 

  2. Herrick D, Parker R, Jacobson A (1990) Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol Cell Biol 10(5):2269–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ross J (1995) mRNA stability in mammalian cells. Microbiol Rev 59(3):423–450

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y, Liu CL, Storey JD, Tibshirani RJ, Herschlag D, Brown PO (2002) Precision and functional specificity in mRNA decay. Proc Natl Acad Sci U S A 99(9):5860–5865. https://doi.org/10.1073/pnas.092538799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dodson RE, Shapiro DJ (2002) Regulation of pathways of mRNA destabilization and stabilization. Prog Nucleic Acid Res Mol Biol 72:129–164

    Article  CAS  PubMed  Google Scholar 

  6. Parker R, Herrick D, Peltz SW, Jacobson A (1991) Measurement of mRNA decay rates in Saccharomyces cerevisiae. Methods Enzymol 194:415–423

    Article  CAS  PubMed  Google Scholar 

  7. Passos DO, Parker R (2008) Analysis of cytoplasmic mRNA decay in Saccharomyces cerevisiae. Methods Enzymol 448:409–427. https://doi.org/10.1016/S0076-6879(08)02620-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miller C, Schwalb B, Maier K, Schulz D, Dumcke S, Zacher B, Mayer A, Sydow J, Marcinowski L, Dolken L, Martin DE, Tresch A, Cramer P (2011) Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol 7:458. https://doi.org/10.1038/msb.2010.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun M, Schwalb B, Schulz D, Pirkl N, Etzold S, Lariviere L, Maier KC, Seizl M, Tresch A, Cramer P (2012) Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation. Genome Res 22(7):1350–1359. https://doi.org/10.1101/gr.130161.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Trcek T, Larson DR, Moldon A, Query CC, Singer RH (2011) Single-molecule mRNA decay measurements reveal promoter-regulated mRNA stability in yeast. Cell 147(7):1484–1497. https://doi.org/10.1016/j.cell.2011.11.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pelechano V, Perez-Ortin JE (2008) The transcriptional inhibitor thiolutin blocks mRNA degradation in yeast. Yeast 25(2):85–92. https://doi.org/10.1002/yea.1548

    Article  CAS  PubMed  Google Scholar 

  12. Grigull J, Mnaimneh S, Pootoolal J, Robinson MD, Hughes TR (2004) Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors. Mol Cell Biol 24(12):5534–5547. https://doi.org/10.1128/MCB.24.12.5534-5547.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95(5):717–728

    Article  CAS  PubMed  Google Scholar 

  14. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  15. Bregman A, Avraham-Kelbert M, Barkai O, Duek L, Guterman A, Choder M (2011) Promoter elements regulate cytoplasmic mRNA decay. Cell 147(7):1473–1483. https://doi.org/10.1016/j.cell.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  16. Enssle J, Kugler W, Hentze MW, Kulozik AE (1993) Determination of mRNA fate by different RNA polymerase II promoters. Proc Natl Acad Sci U S A 90(21):10091–10095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bahar Halpern K, Itzkovitz S (2016) Single molecule approaches for quantifying transcription and degradation rates in intact mammalian tissues. Methods 98:134–142. https://doi.org/10.1016/j.ymeth.2015.11.015

    Article  CAS  PubMed  Google Scholar 

  18. Castelnuovo M, Rahman S, Guffanti E, Infantino V, Stutz F, Zenklusen D (2013) Bimodal expression of PHO84 is modulated by early termination of antisense transcription. Nat Struct Mol Biol 20(7):851–858. https://doi.org/10.1038/nsmb.2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trcek T, Chao JA, Larson DR, Park HY, Zenklusen D, Shenoy SM, Singer RH (2012) Single-mRNA counting using fluorescent in situ hybridization in budding yeast. Nat Protoc 7(2):408–419. https://doi.org/10.1038/nprot.2011.451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zenklusen D, Singer RH (2010) Analyzing mRNA expression using single mRNA resolution fluorescent in situ hybridization. Methods Enzymol 470:641–659. https://doi.org/10.1016/S0076-6879(10)70026-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Battich N, Stoeger T, Pelkmans L (2013) Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat Methods 10(11):1127–1133. https://doi.org/10.1038/nmeth.2657

    Article  CAS  PubMed  Google Scholar 

  22. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X (2015) RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348(6233):aaa6090. https://doi.org/10.1126/science.aaa6090

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells AL, Chao JA, Park HY, de Turris V, Lopez-Jones M, Singer RH (2011) A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods 8(2):165–170. https://doi.org/10.1038/nmeth.1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4(10):e309. https://doi.org/10.1371/journal.pbio.0040309

    Article  PubMed  PubMed Central  Google Scholar 

  25. Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5(10):877–879. https://doi.org/10.1038/nmeth.1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Skinner SO, Sepulveda LA, Xu H, Golding I (2013) Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nat Protoc 8(6):1100–1113. https://doi.org/10.1038/nprot.2013.066

    Article  PubMed  PubMed Central  Google Scholar 

  27. Trcek T, Grosch M, York A, Shroff H, Lionnet T, Lehmann R (2015) Drosophila germ granules are structured and contain homotypic mRNA clusters. Nat Commun 6:7962. https://doi.org/10.1038/ncomms8962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Trovisco V, Belaya K, Nashchekin D, Irion U, Sirinakis G, Butler R, Lee JJ, Gavis ER, St Johnston D (2016) Bicoid mRNA localises to the Drosophila oocyte anterior by random dynein-mediated transport and anchoring. elife 5:e17537. https://doi.org/10.7554/eLife.17537

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vargas DY, Shah K, Batish M, Levandoski M, Sinha S, Marras SA, Schedl P, Tyagi S (2011) Single-molecule imaging of transcriptionally coupled and uncoupled splicing. Cell 147(5):1054–1065. https://doi.org/10.1016/j.cell.2011.10.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu H, Sepulveda LA, Figard L, Sokac AM, Golding I (2015) Combining protein and mRNA quantification to decipher transcriptional regulation. Nat Methods 12(8):739–742. https://doi.org/10.1038/nmeth.3446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zenklusen D, Larson DR, Singer RH (2008) Single-RNA counting reveals alternative modes of gene expression in yeast. Nat Struct Mol Biol 15(12):1263–1271. https://doi.org/10.1038/nsmb.1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trcek T, Lionnet T, Shroff H, Lehmann R (2017) mRNA quantification using single-molecule FISH in Drosophila embryos. Nat Protoc 12(7):1326–1348. https://doi.org/10.1038/nprot.2017.030

    Article  CAS  PubMed  Google Scholar 

  33. Femino AM, Fay FS, Fogarty K, Singer RH (1998) Visualization of single RNA transcripts in situ. Science 280(5363):585–590

    Article  CAS  PubMed  Google Scholar 

  34. Gandhi SJ, Zenklusen D, Lionnet T, Singer RH (2011) Transcription of functionally related constitutive genes is not coordinated. Nat Struct Mol Biol 18(1):27–34. https://doi.org/10.1038/nsmb.1934

    Article  CAS  PubMed  Google Scholar 

  35. Larson DR, Zenklusen D, Wu B, Chao JA, Singer RH (2011) Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332(6028):475–478. https://doi.org/10.1126/science.1202142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Palangat M, Larson DR (2012) Complexity of RNA polymerase II elongation dynamics. Biochim Biophys Acta 1819(7):667–672. https://doi.org/10.1016/j.bbagrm.2012.02.024

    Article  CAS  PubMed  Google Scholar 

  37. Mason PB, Struhl K (2005) Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol Cell 17(6):831–840. https://doi.org/10.1016/j.molcel.2005.02.017

    Article  CAS  PubMed  Google Scholar 

  38. Chubb JR, Trcek T, Shenoy SM, Singer RH (2006) Transcriptional pulsing of a developmental gene. Curr Biol 16(10):1018–1025. https://doi.org/10.1016/j.cub.2006.03.092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Levsky JM, Shenoy SM, Pezo RC, Singer RH (2002) Single-cell gene expression profiling. Science 297(5582):836–840. https://doi.org/10.1126/science.1072241

    Article  CAS  PubMed  Google Scholar 

  40. Pezo RC, Gandhi SJ, Shirley LA, Pestell RG, Augenlicht LH, Singer RH (2008) Single-cell transcription site activation predicts chemotherapy response in human colorectal tumors. Cancer Res 68(13):4977–4982. https://doi.org/10.1158/0008-5472.CAN-07-6770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cho WK, Jayanth N, English BP, Inoue T, Andrews JO, Conway W, Grimm JB, Spille JH, Lavis LD, Lionnet T, Cisse II (2016) RNA polymerase II cluster dynamics predict mRNA output in living cells. eLife 5. https://doi.org/10.7554/eLife.13617

  42. Hoyle NP, Ish-Horowicz D (2013) Transcript processing and export kinetics are rate-limiting steps in expressing vertebrate segmentation clock genes. Proc Natl Acad Sci U S A 110(46):E4316–E4324. https://doi.org/10.1073/pnas.1308811110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lagha M, Bothma JP, Esposito E, Ng S, Stefanik L, Tsui C, Johnston J, Chen K, Gilmour DS, Zeitlinger J, Levine MS (2013) Paused Pol II coordinates tissue morphogenesis in the Drosophila embryo. Cell 153(5):976–987. https://doi.org/10.1016/j.cell.2013.04.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Levesque MJ, Raj A (2013) Single-chromosome transcriptional profiling reveals chromosomal gene expression regulation. Nat Methods 10(3):246–248. https://doi.org/10.1038/nmeth.2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Little SC, Tikhonov M, Gregor T (2013) Precise developmental gene expression arises from globally stochastic transcriptional activity. Cell 154(4):789–800. https://doi.org/10.1016/j.cell.2013.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marzluff WF, Wagner EJ, Duronio RJ (2008) Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 9(11):843–854. https://doi.org/10.1038/nrg2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Messier V, Zenklusen D, Michnick SW (2013) A nutrient-responsive pathway that determines M phase timing through control of B-cyclin mRNA stability. Cell 153(5):1080–1093. https://doi.org/10.1016/j.cell.2013.04.035

    Article  CAS  PubMed  Google Scholar 

  48. Osley MA (1991) The regulation of histone synthesis in the cell cycle. Annu Rev Biochem 60:827–861. https://doi.org/10.1146/annurev.bi.60.070191.004143

    Article  CAS  PubMed  Google Scholar 

  49. Talarek N, Cameroni E, Jaquenoud M, Luo X, Bontron S, Lippman S, Devgan G, Snyder M, Broach JR, De Virgilio C (2010) Initiation of the TORC1-regulated G0 program requires Igo1/2, which license specific mRNAs to evade degradation via the 5′–3′ mRNA decay pathway. Mol Cell 38(3):345–355. https://doi.org/10.1016/j.molcel.2010.02.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ardehali MB, Lis JT (2009) Tracking rates of transcription and splicing in vivo. Nat Struct Mol Biol 16(11):1123–1124. https://doi.org/10.1038/nsmb1109-1123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Daniel R. Larson for helpful comments on our manuscript. T.T. is an HHMI fellow of the Jane Coffin Childs Memorial Fund. D.Z. is supported by the Canadian Institute for Health Research (Project Grant-366682), Natural Sciences and Engineering Research Council of Canada and the Canadian Foundation for Innovation.

Author contributions: T.T. wrote the manuscript. S.R. and D.Z. provided the figures, and all three authors worked on the final design of the figures and manuscript text. All the authors approved the final version of the manuscript. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Trcek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Trcek, T., Rahman, S., Zenklusen, D. (2018). Measuring mRNA Decay in Budding Yeast Using Single Molecule FISH. In: Lamandé, S. (eds) mRNA Decay. Methods in Molecular Biology, vol 1720. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7540-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7540-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7539-6

  • Online ISBN: 978-1-4939-7540-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics